toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bogaerts, A.; Okhrimovskyy, A.; Gijbels, R. doi  openurl
  Title Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell Type A1 Journal article
  Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 17 Issue Pages 1076-1082  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000177766400012 Publication Date 2002-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.379; 2002 IF: 4.250  
  Call Number UA @ lucian @ c:irua:40191 Serial 270  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Hydrogen addition to an argon glow discharge: a numerical simulation Type A1 Journal article
  Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 17 Issue Pages 768-779  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000177254600004 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 48 Open Access  
  Notes Approved Most recent IF: 3.379; 2002 IF: 4.250  
  Call Number UA @ lucian @ c:irua:40190 Serial 1531  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W. doi  openurl
  Title Improved hybrid Monte Carlo-fluid model for the electrical characteristics in an analytical radiofrequency glow discharge in argon Type A1 Journal article
  Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 16 Issue Pages 750-755  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000170034200006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.379; 2001 IF: 3.305  
  Call Number UA @ lucian @ c:irua:37249 Serial 1566  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions Type A1 Journal article
  Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 16 Issue Pages 239-249  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000167163200001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 36 Open Access  
  Notes Approved Most recent IF: 3.379; 2001 IF: 3.305  
  Call Number UA @ lucian @ c:irua:34146 Serial 2116  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Hybrid Monte Carlo-fluid model for a microsecond pulsed glow discharge Type A1 Journal article
  Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 15 Issue Pages 895-905  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000088467600001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.379; 2000 IF: 3.488  
  Call Number UA @ lucian @ c:irua:34070 Serial 1524  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation Type A1 Journal article
  Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 15 Issue Pages 1191-1201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000089141900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.379; 2000 IF: 3.488  
  Call Number UA @ lucian @ c:irua:34076 Serial 3001  
Permanent link to this record
 

 
Author Tavernier, S.M.F.; Nies, E.; Gijbels, R. doi  openurl
  Title Hard-spere model for hydrodynamic chromatography systems Type A1 Journal article
  Year 1981 Publication Analytical proceedings Abbreviated Journal  
  Volume 18 Issue Pages 31-34  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 2004-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-557X; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:110347 Serial 1409  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations Type A1 Journal article
  Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 15 Issue Pages 441-449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000086323700021 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 58 Open Access  
  Notes Approved Most recent IF: 3.379; 2000 IF: 3.488  
  Call Number UA @ lucian @ c:irua:28323 Serial 856  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title The glow discharge: an exciting plasma Type A1 Journal article
  Year 1999 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 14 Issue Pages 1375-1384  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000083077900016 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.379; 1999 IF: 3.677  
  Call Number UA @ lucian @ c:irua:28319 Serial 1348  
Permanent link to this record
 

 
Author de Vyt, A.; Gijbels, R.; Davock, H.; van Roost, C.; Geuens, I. doi  openurl
  Title Characterization of AgxAuy nano particles by TEM and STEM Type A1 Journal article
  Year 1999 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 14 Issue Pages 499-504  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000079138500027 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.379; 1999 IF: 3.677  
  Call Number UA @ lucian @ c:irua:24927 Serial 334  
Permanent link to this record
 

 
Author Verlinden, G.; Gijbels, R.; Geuens, I.; de Keyzer, R. doi  openurl
  Title Surface analysis of halide distributions in complex AgX microcrystals by imaging time-of-flight SIMS (TOF-SIMS) Type A1 Journal article
  Year 1999 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 14 Issue Pages 429-434  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000079138500015 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.379; 1999 IF: 3.677  
  Call Number UA @ lucian @ c:irua:24928 Serial 3390  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment Type A1 Journal article
  Year 1998 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 13 Issue Pages 721-726  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000075385700006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.379; 1998 IF: 3.845  
  Call Number UA @ lucian @ c:irua:24127 Serial 149  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Modeling of argon direct current glow discharges and comparison with experiment: how good is the agreement? Type A1 Journal article
  Year 1998 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 13 Issue Pages 945-953  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000076002900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.379; 1998 IF: 3.845  
  Call Number UA @ lucian @ c:irua:24128 Serial 2118  
Permanent link to this record
 

 
Author Cambré, S.; Campo, J.; Beirnaert, C.; Verlackt, C.; Cool, P.; Wenseleers, W. pdf  doi
openurl 
  Title Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response Type A1 Journal article
  Year 2015 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 10 Issue 10 Pages 248-252  
  Keywords A1 Journal article; Engineering sciences. Technology; Nanostructured and organic optical and electronic materials (NANOrOPT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Asymmetric dye molecules have unusual optical and electronic properties1, 2, 3. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers2, 3. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p′-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response4) inside single-walled carbon nanotubes (SWCNTs)5, 6, an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (β0 = 9,800 × 10−30 e.s.u.), resulting from the coherent alignment of arrays of ∼70 DANS molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350799700016 Publication Date 2015-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 46 Open Access  
  Notes Approved Most recent IF: 38.986; 2015 IF: 34.048  
  Call Number c:irua:125405 Serial 158  
Permanent link to this record
 

 
Author Tambuyzer, B.R.; Bergwerf, I.; de Vocht, N.; Reekmans, K.; Daans, J.; Jorens, P.G.; Goossens, H.; Ysebaert, D.K.; Chatterjee, S.; Van Marck, E.; Berneman, Z.N.; Ponsaerts, P. doi  openurl
  Title Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation Type A1 Journal article
  Year 2009 Publication Immunology and cell biology Abbreviated Journal Immunol Cell Biol  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although adult and embryonic stem cell-based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell-based therapy for CNS injury will likely be performed using well-characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow-derived stromal cells (BM-SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM-SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM-SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM-SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM-SC in the CNS of immune-competent mice. Moreover, our results suggest that microglia, rather than T-cells, are the major contributors to allograft rejection in the CNS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Adelaide Editor  
  Language Wos 000266208800003 Publication Date 2009-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0818-9641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.557 Times cited 31 Open Access  
  Notes Approved Most recent IF: 4.557; 2009 IF: 4.200  
  Call Number UA @ lucian @ c:irua:74903 Serial 4515  
Permanent link to this record
 

 
Author Xu, X.; Vereecke, G.; Chen, C.; Pourtois, G.; Armini, S.; Verellen, N.; Tsai, W.K.; Kim, D.W.; Lee, E.; Lin, C.Y.; Van Dorpe, P.; Struyf, H.; Holsteyns, F.; Moshchalkov, V.; Indekeu, J.; De Gendt, S.; doi  openurl
  Title Capturing wetting states in nanopatterned silicon Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 1 Pages 885-893  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Spectacular progress in developing advanced Si circuits with reduced size, along the track of Moore's law, has been relying on necessary developments in wet cleaning of nanopatterned Si wafers to provide contaminant free surfaces. The most efficient cleaning is achieved when complete wetting can be realized. In this work, ordered arrays of silicon nanopillars on a hitherto unexplored small scale have been used to study the wetting behavior on nanomodulated surfaces in a substantial range of surface treatments and geometrical parameters. With the use of optical reflectance measurements, the nanoscale water imbibition depths have been measured and the transition to the superhydrophobic Cassie-Baxter state has been accurately determined. For pillars of high aspect ratio (about 15), the transition occurs even when the surface is grafted with a hydrophilic functional group. We have found a striking consistent deviation between the contact angle measurements and the straightforward application of the classical wetting models. Molecular dynamics simulations show that these deviations can be attributed to the long overlooked atomic-scale surface perturbations that are introduced during the nanofabrication process. When the transition condition is approached, transient states of partial imbibition that characterize intermediate states between the Wenzel and Cassie-Baxter states are revealed in our experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330542900092 Publication Date 2013-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 39 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:114871 Serial 276  
Permanent link to this record
 

 
Author Neyts, E.C.; Shibuta, Y.; van Duin, A.C.T.; Bogaerts, A. doi  openurl
  Title Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations Type A1 Journal article
  Year 2010 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue 11 Pages 6665-6672  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Metal-catalyzed growth mechanisms of carbon nanotubes (CNTs) were studied by hybrid molecular dynamics−Monte Carlo simulations using a recently developed ReaxFF reactive force field. Using this novel approach, including relaxation effects, a CNT with definable chirality is obtained, and a step-by-step atomistic description of the nucleation process is presented. Both root and tip growth mechanisms are observed. The importance of the relaxation of the network is highlighted by the observed healing of defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284438000043 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 129 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84759 Serial 294  
Permanent link to this record
 

 
Author Lenaerts, J.; Verlinden, G.; van Vaeck, L.; Gijbels, R.; Geuens, I.; Callant, P. doi  openurl
  Title Exchange of fluorinated cyanine dyes between different types of silver halide microcrystals studied by imaging time-of-flight secondary ion mass spectrometry Type A1 Journal article
  Year 2001 Publication Langmuir Abbreviated Journal Langmuir  
  Volume 17 Issue 23 Pages 7332-7338  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000172123700027 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.833; 2001 IF: 2.963  
  Call Number UA @ lucian @ c:irua:37254 Serial 1108  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the sputtering in a dc magnetron Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C  
  Volume 27 Issue 1 Pages 20-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263299600018 Publication Date 2009-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 66 Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:71634 Serial 2411  
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. doi  openurl
  Title Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 6592-6603  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000351970800015 Publication Date 2015-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 10 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:125544 Serial 171  
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. doi  openurl
  Title Atomic layer deposition of ruthenium on a titanium nitride surface : a density functional theory study Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 38 Pages 19442-19453  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of its excellent properties in nanotechnology applications, atomic layer deposition of ruthenium (Ru) has been the subject of numerous experimental studies. Recently, two different Ru precursors were compared for plasma-enhanced atomic layer deposition (PEALD) of Ru, and their reactivity was found to be different. Inhibition was observed for bis(ethylcyclopentadienyl)ruthenium (Ru(EtCp)(2)), while nearly linear growth behavior was observed for (methylcyclopentadienyl-pyrrolyl)ruthenium (Ru(MeCp)Py). To understand this difference in reactivity, we investigate the adsorption of RuCp, and RuCpPy (i.e., without substituents) on a TiN surface using calculations based on periodic boundary conditions density functional theory (DFT) combined with experiments based on Rutherford backscattering spectroscopy (RBS). The calculations demonstrate that the RuCpPy precursor chemisorbs on the TiN(100) surface while the RuCp2 precursor only physisorbs. We propose a reaction mechanism for the chemisorption of RuCpPy. The area density of the calculated RuCpPy surface species is compared with the experimental values from RBS. The impact of a H-plasma is also investigated. The DFT calculations and experimental results from RBS provide insight into the adsorption processes of the RuCpPy and RuCp2 precursors on the TiN(100) surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330162500022 Publication Date 2013-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:114855 Serial 170  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; Huygh, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A. pdf  doi
openurl 
  Title New mechanism for oxidation of native silicon oxide Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 19 Pages 9819-9825  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Continued miniaturization of metal-oxide-semiconductor field-effect transistors (MOSFETs) requires an ever-decreasing thickness of the gate oxide. The structure of ultrathin silicon oxide films, however, critically depends on the oxidation mechanism. Using reactive atomistic simulations, we here demonstrate how the oxidation mechanism in hyperthermal oxidation of such structures may be controlled by the oxidation temperature and the oxidant energy. Specifically, we study the interaction of hyperthermal oxygen with energies of 15 eV with thin SiOx (x ≤ 2) films with a native oxide thickness of about 10 Å. We analyze the oxygen penetration depth probability and compare with results of the hyperthermal oxidation of a bare Si(100){2 × 1} (c-Si) surface. The temperature-dependent oxidation mechanisms are discussed in detail. Our results demonstrate that, at low (i.e., room) temperature, the penetrated oxygen mostly resides in the oxide region rather than at the SiOx|c-Si interface. However, at higher temperatures, starting at around 700 K, oxygen atoms are found to penetrate and to diffuse through the oxide layer followed by reaction at the c-Si boundary. We demonstrate that hyperthermal oxidation resembles thermal oxidation, which can be described by the DealGrove model at high temperatures. Furthermore, defect creation mechanisms that occur during the oxidation process are also analyzed. This study is useful for the fabrication of ultrathin silicon oxide gate oxides for metal-oxide-semiconductor devices as it links parameters that can be straightforwardly controlled in experiment (oxygen temperature, velocity) with the silicon oxide structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000319649100032 Publication Date 2013-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 24 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:107989 Serial 2321  
Permanent link to this record
 

 
Author Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. pdf  doi
openurl 
  Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 11 Pages 5993-5998  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000316773000056 Publication Date 2013-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 59 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:107154 Serial 2636  
Permanent link to this record
 

 
Author Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A. pdf  doi
openurl 
  Title Plasma-based dry reforming : a computational study ranging from the nanoseconds to seconds time scale Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 10 Pages 4957-4970  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a computational study for the conversion of CH4 and CO2 into value-added chemicals, i.e., the so-called dry reforming of methane, in a dielectric barrier discharge reactor. A zero-dimensional chemical kinetics model is applied to study the plasma chemistry in a 1:1 CH4/CO2 mixture. The calculations are first performed for one microdischarge pulse and its afterglow, to study in detail the chemical pathways of the conversion. Subsequently, long time-scale simulations are carried out, corresponding to real residence times in the plasma, assuming a large number of consecutive microdischarge pulses, to mimic the conditions of the filamentary discharge regime in a dielectric barrier discharge (DBD) reactor. The conversion of CH4 and CO2 as well as the selectivity of the formed products and the energy cost and energy efficiency of the process are calculated and compared to experiments for a range of different powers and gas flows, and reasonable agreement is reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000316308400010 Publication Date 2013-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 118 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:106516 Serial 2628  
Permanent link to this record
 

 
Author Aerts, R.; Martens, T.; Bogaerts, A. doi  openurl
  Title Influence of vibrational states on CO2 splitting by dielectric barrier discharges Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 44 Pages 23257-23273  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the splitting of CO2 in a pulsed plasma system, such as a dielectric barrier discharge (DBD), is evaluated from a chemical point of view by means of numerical modeling. For this purpose, a chemical reaction set of CO2 in an atmospheric pressure plasma is developed, including the vibrational states of CO2, O2, and CO. The simulated pulses are matched to the conditions of a filament (or microdischarge) and repeated with intervals of 1 μs. The influence of vibrationally excited CO2 as well as other neutral species, ions, and electrons on the CO2 splitting is discussed. Our calculations predict that the electrons have the largest contribution to the CO2 splitting at the conditions under study, by electron impact dissociation. The contribution of vibrationally excited CO2 levels in the splitting of CO2 is found be 6.4%, when only considering one microdischarge pulse and its afterglow, but it can be much higher for consecutive discharge pulses, as is typical for a filamentary DBD, when the interpulse time is short enough and accumulation effects in the vibrationally excited CO2 densities can occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000310769300012 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 112 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101764 Serial 1659  
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  doi
openurl 
  Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 39 Pages 20958-20965  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000309375700040 Publication Date 2012-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 37 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101522 Serial 2640  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title On the c-Si\mid a-SiO2 interface in hyperthermal Si oxidation at room temperature Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 41 Pages 21856-21863  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The exact structure and properties of the Si vertical bar SiO2 interface are very important in microelectronics and photovoltaic devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs) and solar cells. Whereas Si vertical bar SiO2 structures are traditionally produced by thermal oxidation, hyperthermal oxidation shows a number of promising advantages. However, the Si vertical bar SiO2 interface induced in hyperthermal Si oxidation has not been properly investigated yet. Therefore, in this work, the interface morphology and interfacial stresses during hyperthermal oxidation at room temperature are studied using reactive molecular dynamics simulations based on the ReaxFF potential. Interface thickness and roughness, as well as the bond length and bond angle distributions in the interface are discussed and compared with other models developed for the interfaces induced by traditional thermal oxidation. The formation of a compressive stress is observed. This compressive stress, which at the interface amounts about 2 GPa, significantly slows down the inward silica growth. This value is close to the experimental value in the Si vertical bar SiO2 interface obtained in traditional thermal oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000309902100026 Publication Date 2012-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 27 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:102167 Serial 2458  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Hyperthermal oxidation of Si(100)2x1 surfaces : effect of growth temperature Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 15 Pages 8649-8656  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using reactive molecular dynamics simulations based on the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation as a function of temperature in the range 100-1300 K. Oxidation of Si(100){2 x 1} surfaces by both atomic and molecular oxygen was investigated for hyperthermal impact energies in the range of 1 to 5 eV. Two different growth mechanisms are found, corresponding to a low temperature oxidation and a high temperature one. The transition temperature between these mechanisms is estimated to be about 700 K. Also, the initial step of the Si oxidation process is analyzed in detail. Where possible, we validated our results with experimental and ab initio data, and good agreement was obtained. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry and, more specifically, for the fabrication of metal oxide semiconductor devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302924900035 Publication Date 2012-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 32 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:98259 Serial 1542  
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T. doi  openurl
  Title Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 50 Pages 24839-24848  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297947700050 Publication Date 2011-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 36 Open Access  
  Notes Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:94303 Serial 273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: