toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M. doi  openurl
  Title Using self-driven microswimmers for particle separation Type A1 Journal article
  Year 2012 Publication Soft matter Abbreviated Journal Soft Matter  
  Volume 8 Issue 19 Pages 5175-5179  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000303208700009 Publication Date 2012-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.889 Times cited 45 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved Most recent IF: 3.889; 2012 IF: 3.909  
  Call Number UA @ lucian @ c:irua:98326 Serial 3826  
Permanent link to this record
 

 
Author Tyutyunnik, A.P.; Slobodin, B.V.; Samigullina, R.F.; Verberck, B.; Tarakina, N.V. doi  openurl
  Title K2CaV2O7 : a pyrovanadate with a new layered type of structure in the A2BV2O7 family Type A1 Journal article
  Year 2013 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 42 Issue 4 Pages 1057-1064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The crystal structure of K2CaV2O7 prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P (1) over bar, Z = 2) with unit cell constants a = 7.1577(1) angstrom, b = 10.5104(2) angstrom, c = 5.8187(1) angstrom, alpha = 106.3368(9)degrees, beta = 106.235(1)degrees, gamma = 71.1375(9)degrees. The structure can be described as infinite undulating CaV2O72- layers parallel to the ac plane, which consist of pairs of edge-sharing CaO6 octahedra connected to each other through V2O7 pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312659200030 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 3 Open Access  
  Notes ; N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. B. V. was financially supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 4.029; 2013 IF: 4.097  
  Call Number UA @ lucian @ c:irua:105945 Serial 3536  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. pdf  doi
openurl 
  Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 4 Pages 1463-1467  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000298754500018 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 67 Open Access  
  Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:96266 Serial 3578  
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M. doi  openurl
  Title A three-dimensional model for artificial atoms and molecules: influence of substrate orientation and magnetic field dependence Type A1 Journal article
  Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 17 Issue 35 Pages 3687-3695  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000249080100013 Publication Date 2007-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:66124 Serial 3653  
Permanent link to this record
 

 
Author Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V. doi  openurl
  Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue Pages 35687  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000385919600001 Publication Date 2016-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 22 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:144636 Serial 4701  
Permanent link to this record
 

 
Author Litzius, K.; Leliaert, J.; Bassirian, P.; Rodrigues, D.; Kromin, S.; Lemesh, I.; Zazvorka, J.; Lee, K.-J.; Mulkers, J.; Kerber, N.; Heinze, D.; Keil, N.; Reeve, R.M.; Weigand, M.; Van Waeyenberge, B.; Schuetz, G.; Everschor-Sitte, K.; Beach, G.S.D.; Klaeui, M. pdf  doi
openurl 
  Title The role of temperature and drive current in skyrmion dynamics Type A1 Journal article
  Year 2020 Publication Nature Electronics Abbreviated Journal  
  Volume 3 Issue 1 Pages 30-36  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topologically stabilized nanoscale spin structures that could be of use in the development of future spintronic devices. When a skyrmion is driven by an electric current it propagates at an angle relative to the flow of current-known as the skyrmion Hall angle (SkHA)-that is a function of the drive current. This drive dependence, as well as thermal effects due to Joule heating, could be used to tailor skyrmion trajectories, but are not well understood. Here we report a study of skyrmion dynamics as a function of temperature and drive amplitude. We find that the skyrmion velocity depends strongly on temperature, while the SkHA does not and instead evolves differently in the low- and high-drive regimes. In particular, the maximum skyrmion velocity in ferromagnetic devices is limited by a mechanism based on skyrmion surface tension and deformation (where the skyrmion transitions into a stripe). Our mechanism provides a complete description of the SkHA in ferromagnetic multilayers across the full range of drive strengths, illustrating that skyrmion trajectories can be engineered for device applications. An analysis of skyrmion dynamics at different temperatures and electric drive currents is used to develop a complete description of the skyrmion Hall angle in ferromagnetic multilayers from the creep to the flow regime and illustrates that skyrmion trajectories can be engineered for device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510860800012 Publication Date 2020-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167863 Serial 6625  
Permanent link to this record
 

 
Author Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N. doi  openurl
  Title Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 4710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconductingto- normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427588300011 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 37 Open Access  
  Notes ; We thank Antonio Bianconi, Mauro Doria and Vincenzo Lacquaniti for useful discussions. We acknowledge the collaboration with Federica Celegato for AFM analysis and Sara Quercetti for the electrical properties characterization. A. P. and N. P. acknowledge financial support from University of Camerino FAR project CESEMN. We also acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150843UA @ admin @ c:irua:150843 Serial 4965  
Permanent link to this record
 

 
Author Mao, J.; Milovanović, S.P.; Andelkovic, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; Jiang, Y.; Andrei, E.Y. pdf  doi
openurl 
  Title Evidence of flat bands and correlated states in buckled graphene superlattices Type A1 Journal article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 584 Issue 7820 Pages 215-220  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure(1-5). An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers(6). The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition(7-9), resulting in a periodically modulated pseudo-magnetic field(10-14), which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state(15-17). This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559831500012 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited 75 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 64.8; 2020 IF: 40.137  
  Call Number UA @ admin @ c:irua:171150 Serial 6513  
Permanent link to this record
 

 
Author Zhou, K.-G.; Vasu, K.S.; Cherian, C.T.; Neek-Amal, M.; Zhang, J.C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O.P.; Kravets, V.G.; Abraham, J.; Su, Y.; Grigorenko, A.N.; Pratt, A.; Geim, A.K.; Peeters, F.M.; Novoselov, K.S.; Nair, R.R. pdf  doi
openurl 
  Title Electrically controlled water permeation through graphene oxide membranes Type A1 Journal article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 559 Issue 7713 Pages 236-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies(1-7). Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength(3,8). Electrical control over water transport is an attractive alternative; however, theory and simulations(9-14) have often yielded conflicting results, from freezing of water molecules to melting of ice(14-16) under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes(17-21). Such membranes have previously been shown to exhibit ultrafast permeation of water(17,22) and molecular sieving properties(18,21), with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000438240900052 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 216 Open Access  
  Notes ; This work was supported by the Royal Society, Engineering and Physical Sciences Research Council, UK (EP/K016946/1, EP/N013670/1 and EP/P00119X/1), British Council (award reference number 279336045), European Research Council (contract 679689) and Lloyd's Register Foundation. We thank J. Waters for assisting with X-ray measurements and G. Yu for electrical measurements. ; Approved Most recent IF: 40.137  
  Call Number UA @ lucian @ c:irua:152420UA @ admin @ c:irua:152420 Serial 5096  
Permanent link to this record
 

 
Author Hu, S.; Gopinadhan, K.; Rakowski, A.; Neek-Amal, M.; Heine, T.; Grigorieva, I.V.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  doi
openurl 
  Title Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals Type A1 Journal article
  Year 2018 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 13 Issue 6 Pages 468-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures(1-5). Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in the de Broglie wavelengths of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434715700015 Publication Date 2018-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 32 Open Access  
  Notes ; The authors acknowledge support from the Lloyd's Register Foundation, EPSRC – EP/N010345/1, the European Research Council ARTIMATTER project – ERC-2012-ADG and from Graphene Flagship. M.L.-H. acknowledges a Leverhulme Early Career Fellowship. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:152014UA @ admin @ c:irua:152014 Serial 5046  
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H. doi  openurl
  Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 5628  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000698984500003 Publication Date 2021-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:191688 Serial 8404  
Permanent link to this record
 

 
Author Partoens, B. doi  openurl
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue Pages 333-334  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335371200003 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 8 Open Access  
  Notes Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:141068 Serial 4608  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 3720  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335223200007 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 62 Open Access  
  Notes ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:117201 Serial 3819  
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.; doi  openurl
  Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 3252  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332666700010 Publication Date 2014-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 806 Open Access  
  Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:119247 Serial 2192  
Permanent link to this record
 

 
Author Chaves, A.; Neilson, D. pdf  doi
openurl 
  Title Exotic state seen at high temperatures Type Editorial
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 574 Issue 7776 Pages 39-40  
  Keywords Editorial; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The phenomenon of Bose-Einstein condensation is typically limited to extremely low temperatures. The effect has now been spotted at much higher temperatures for particles called excitons in atomically thin semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488832500022 Publication Date 2019-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 40.137  
  Call Number UA @ admin @ c:irua:163739 Serial 5413  
Permanent link to this record
 

 
Author Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Peeters, F.M.; Schweigert, V.A. doi  openurl
  Title Non-quantized penetration of magnetic field in the vortex state of superconductors Type A1 Journal article
  Year 2000 Publication Nature Abbreviated Journal Nature  
  Volume 407 Issue Pages 55-57  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000089124000037 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 155 Open Access  
  Notes Approved Most recent IF: 40.137; 2000 IF: 25.814  
  Call Number UA @ lucian @ c:irua:34356 Serial 2350  
Permanent link to this record
 

 
Author Krstajic, P.M.; Ivanov, V.A.; Peeters, F.M.; Fleurov, V.; Kikoin, K. pdf  doi
openurl 
  Title Ferromagnetism in Mn-doped GaAs : the kinematic exchange Type A1 Journal article
  Year 2003 Publication Journal of superconductivity T2 – PASPS Conference 2002, JUL, 2002, WURZBURG, GERMANY Abbreviated Journal J Supercond  
  Volume 16 Issue 1 Pages 111-113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We developed a microscopic model in order to describe the onset of ferromagnetism (FM) in GaAs:Mn. The proposed kinematic mechanism bears resemblances with the Zener exchange. The calculated Curie temperature for GaAs: Mn is in good agreement with available experimental data of the Curie temperature as a function of the manganese concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000182060400027 Publication Date 2003-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0896-1107; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103314 Serial 1183  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 311-320  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900013 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44988 Serial 3875  
Permanent link to this record
 

 
Author Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M. doi  openurl
  Title The vortex-magnetic dipole interaction in the London approximation Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 321-331  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900014 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44987 Serial 3868  
Permanent link to this record
 

 
Author Yampolskii, S.V.; Baelus, B.J.; Peeters, F.M.; Kolacek, J. doi  openurl
  Title Electric charges in superconducting mesoscopic samples Type A1 Journal article
  Year 2002 Publication Czechoslovak journal of physics T2 – 11th Czech and Slovak Conference on Magnetism (CSMAG 01), AUG 20-23, 2001, KOSICE, SLOVAKIA Abbreviated Journal Czech J Phys  
  Volume 52 Issue 2 Pages 303-306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The distribution of the electric charge density in mesoscopic superconducting disks and cylinders is studied within the phenomenological Ginzburg-Landau approach. We found that, even in the Meissner state the mesoscopic sample exhibits a non-uniform charge distribution such that a region near the sample edge becomes negatively charged. When vortices are inside the sample there is a superposition of the negative charge located at the vortex core and this Meissner charge, and, as a result, the charge at the sample edge changes sign as a function of the applied magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000174955600046 Publication Date 2002-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-4626; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103374 Serial 880  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.; doi  openurl
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 8 Pages 7801-7808  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340992300025 Publication Date 2014-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 23 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:119263 Serial 1857  
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.; doi  openurl
  Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 3 Pages 2697-2703  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000333539400085 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 38 Open Access  
  Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116881 Serial 2978  
Permanent link to this record
 

 
Author Tognalii, N.G.; Cortés, E.; Hernández-Nieves, A.D.; Carro, P.; Usaj, G.; Balseiro, C.A.; Vela, M.E.; Salvarezza, R.C.; Fainstein, A. doi  openurl
  Title From single to multiple Ag-layer modification of Au nanocavity substrates : a tunable probe of the chemical surface-enhanced Raman scattering mechanism Type A1 Journal article
  Year 2011 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 5 Issue 7 Pages 5433-5443  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 1020 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293035200019 Publication Date 2011-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes ; We acknowledge financial support from ANPCyT (Argentina, PICT08-1617, PICT08-2236, PICT06-621, PICT-CNPQ-08-0019, PAE 22711, PICT06-01061, PICT06-483) and Project CTQ2008-06017/BQU, Spain. N.G.T, E.C., A.D.H.N., R.C.S, G.U., C.A.B., and A.F. are also at CONICET. M.E.V. is a member of the research career of CIC BsAs. R.C.S., C.A.B., and A.F. are Guggenheim Foundation Fellows. We would like to thank Dr. M. H. Fonticelli for fruitful discussions on the electrochemical measurements and Dr. H. Pastoriza for the help with the SEM measurements. ; Approved Most recent IF: 13.942; 2011 IF: 11.421  
  Call Number UA @ lucian @ c:irua:91775 Serial 1285  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. doi  openurl
  Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 12 Pages 4088-4092  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000272395400023 Publication Date 2009-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:80318 Serial 1024  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 1 Pages 107-111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000262519100020 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:76022 Serial 2601  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Benedict, M.G.; Peeters, F.M. doi  openurl
  Title Networks of quantum nanorings : programmable spintronic devices Type A1 Journal article
  Year 2008 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 8 Issue 8 Pages 2556-2558  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An array of quantum rings with local (ring by ring) modulation of the spin orbit interaction (SOI) can lead to novel effects in spin state transformation of electrons. It is shown that already small (3 x 3, 5 x 5) networks are remarkably versatile from this point of view: Working in a given network geometry, the input current can be directed to any of the output ports, simply by changing the SOI strengths by external gate voltages. Additionally, the same network with different SOI strengths can be completely analogous to the Stern-Gerlach device, exhibiting spatial-spin entanglement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000258440700077 Publication Date 2008-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 76 Open Access  
  Notes Approved Most recent IF: 12.712; 2008 IF: 10.371  
  Call Number UA @ lucian @ c:irua:102609 Serial 2294  
Permanent link to this record
 

 
Author Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; Tongay, S.; doi  openurl
  Title Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 15 Issue 15 Pages 1660-1666  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by strain engineering. Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000351188000033 Publication Date 2015-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 314 Open Access  
  Notes ; This work is supported by Arizona State University, Research Seeding Program, the National Natural Science Foundation of China (91233120), and the National Basic Research Program of China (2011CB921901). Q., Liu acknowledges the support to this work by NSFC (10974037), NBRPC (2010CB934102), and the CAS Strategy Pilot program (XDA 09020300). S. Yang acknowledges financial support from China Postdoctoral Science Foundation (No. 2013M540127). ; Approved Most recent IF: 12.712; 2015 IF: 13.592  
  Call Number c:irua:125480 Serial 3758  
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Tunable quantum dots in bilayer graphene Type A1 Journal article
  Year 2007 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 7 Issue 4 Pages 946-949  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000245600500017 Publication Date 2007-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 167 Open Access  
  Notes Approved Most recent IF: 12.712; 2007 IF: 9.627  
  Call Number UA @ lucian @ c:irua:64118 Serial 3745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: