|   | 
Details
   web
Records
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B
Volume 46 Issue Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:2998 Serial 890
Permanent link to this record
 

 
Author Karavolas, V.C.; Triberis, G.P.; Peeters, F.M.
Title Electrical and thermal transport of composite fermions Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 56 Issue Pages 15289-15298
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000071043700067 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19272 Serial 891
Permanent link to this record
 

 
Author Sofo, J.O.; Suarez, A.M.; Usaj, G.; Cornaglia, P.S.; Hernández-Nieves, A.D.; Balseiro, C.A.
Title Electrical control of the chemical bonding of fluorine on graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 8 Pages 081411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the electronic structure of diluted F atoms chemisorbed on graphene using density functional theory calculations. We show that the nature of the chemical bonding of a F atom adsorbed on top of a C atom in graphene strongly depends on carrier doping. In neutral samples the F impurities induce a sp(3)-like bonding of the C atom below, generating a local distortion of the hexagonal lattice. As the graphene is electron-doped, the C atom retracts back to the graphene plane and for high doping (10(14) cm(-2)) its electronic structure corresponds to a nearly pure sp(2) configuration. We interpret this sp(3)-sp(2) doping-induced crossover in terms of a simple tight-binding model and discuss the physical consequences of this change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287484800005 Publication Date 2011-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 65 Open Access
Notes ; J.O.S. and A. S. acknowledge support from the Donors of the American Chemical Society Petroleum Research Fund and use of facilities at the Penn State Materials Simulation Center. G. U., P. S. C., A. D. H., and C. A. B. acknowledge financial support from PICTs 06-483 and 2008-2236 from ANPCyT and PIP 11220080101821 from CONICET, Argentina. A. D. H. acknowledges support from the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:105600 Serial 892
Permanent link to this record
 

 
Author Moshnyaga, V.; Gehrke, K.; Sudheendra, L.; Belenchuk, A.; Raabe, S.; Shapoval, O.; Verbeeck, J.; Van Tendeloo, G.; Samwer, K.
Title Electrical nonlinearity in colossal magnetoresistance manganite films: relevance of correlated polarons Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 13 Pages 134413,1-134413,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The metal-insulator (MI) transition in epitaxial thin films of La0.75Ca0.25MnO3 (LCMO) is accompanied by the appearance of an intrinsic electrical nonlinearity. The latter, probed by electrical third harmonic voltage, U3, or resistance, R3=dU3/dJ, is drastically enhanced in the vicinity of the MI transition, TMI=267 K. Applied magnetic field, B=5 T, suppresses the nonlinearity, resulting in a huge nonlinear CMR3(TMI)~105%. R3 shows a peculiar low-frequency (1 kHz) dependence, R3~(-0)n, with exponent, n, changing across the MI transition from n~1,52 for TTMI to n=1 (T<TMI). The observed electrical nonlinearity in LCMO reflects the behavior of correlated polarons, the number of which dramatically enhances in the vicinity of TMI. We argued that correlated polarons, considered as electric-elastic quadrupoles, provide a nonlinear (quadratic) coupling to the electric field, yielding a third harmonic electric nonlinearity in LCMO. The reference film of La0.7Sr0.3MnO3 (LSMO), a prototypic double exchange system with second-order phase transition, is characterized as a linear metallic material in the whole range of temperatures (T=10400 K), magnetic fields (B=05 T), and frequencies (=11000 Hz).
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000265942800074 Publication Date 2009-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77022UA @ admin @ c:irua:77022 Serial 893
Permanent link to this record
 

 
Author Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 21 Pages 212115,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hysteretic resistance switching is observed in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions under bias voltage cycling between negative and positive values of about 1 V. The junctions switch back and forth between high- and low-resistance states, both of which depend on the device bias history. A linear dependence is found between the magnitude of the tunnel magnetoresistance and the crafted resistance of the junctions. To explain these results, a model is proposed that considers electron transport both by elastic tunneling and by defect-assisted transmission. (c) 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256303500042 Publication Date 2008-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69284UA @ admin @ c:irua:69284 Serial 894
Permanent link to this record
 

 
Author Schulze, A.; Hantschel, T.; Dathe, A.; Eyben, P.; Ke, X.; Vandervorst, W.
Title Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 23 Issue 30 Pages 305707
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000306333500029 Publication Date 2012-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 29 Open Access
Notes Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:100750 Serial 895
Permanent link to this record
 

 
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M.
Title Electrical transport through magnetic barriers Type A1 Journal article
Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 2 Issue Pages 899-903
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000075383500184 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.221 Times cited Open Access
Notes Approved Most recent IF: 2.221; 1998 IF: NA
Call Number UA @ lucian @ c:irua:24187 Serial 896
Permanent link to this record
 

 
Author Nogaret, A.; Peeters, F.M.
Title Electrically induced spin resonance fluorescence: 1: theory Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 7 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during which the spin performs Rabi oscillations. The quantum correlations between random radiative decays manifest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and the spin polarization of the incoming current. The output power contains a fine structure arising from the anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission peaks at odd multiples of the fundamental frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300091 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66117 Serial 897
Permanent link to this record
 

 
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M.
Title Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
Year 2007 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 76 Issue 7 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300092 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66118 Serial 898
Permanent link to this record
 

 
Author Ghica, C.; Enculescu, I.; Nistor, L.C.; Matei, E.; Van Tendeloo, G.
Title Electrochemical growth and characterization of nanostructured ZnO thin films Type A1 Journal article
Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M
Volume 10 Issue 12 Pages 3237-3240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnO is a wide band-gap (ca. 3.4 eV) semiconductor, piezoelectric, pyroelectric, biocompatible, transparent in the visible spectrum and UV light emitting material. The fabrication in 2001 of the first nanobelts of semiconductor oxide materials lead to a rapid expansion of researches concerning one dimensional nanostructures (nanotubes, nanowires, nanobelts), given their possible application in optics, optoelectronics, piezoelectricity, catalysis. Researches carried on up to date evidenced the possibility to obtain an extraordinary variety of ZnO nanostructures, in function of the experimental parameters and the used growth methods. In this work we present morphostructural results on nanostructured ZnO layers obtained by electrochemical deposition. The films have been grown on gold covered glass plates and Si wafers, in various experimental conditions such as: nature of the wetting agents, electrical polarization of the substrate (continuous, pulsed). The influence of the growth conditions on the crystalline structure and morphology of the films is revealed by scanning and transmission electron microscopy studies. The films show a variety of growth morphologies, from entangled-wires-like to honeycomb-like layers. These large-specific-surface layers will be tested as nanostructured substrates for photovoltaic cells with improved efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Bucharest Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1454-4164 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.449 Times cited Open Access
Notes Approved Most recent IF: 0.449; 2008 IF: 0.577
Call Number UA @ lucian @ c:irua:75746 Serial 899
Permanent link to this record
 

 
Author Ustarroz, J.; Gupta, U.; Hubin, A.; Bals, S.; Terryn, H.
Title Electrodeposition of Ag nanoparticles onto carbon coated TEM grids : a direct approach to study early stages of nucleation Type A1 Journal article
Year 2010 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
Volume 12 Issue 12 Pages 1706-1709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An innovative experimental approach to study the electrodeposition of small nanoparticles and the early stages of electrochemical nucleation and growth is presented. Carbon coated gold TEM grids are used as substrates for the electrodeposition of silver nanoparticles so that electrochemical data, FESEM, HAADFSTEM and HRTEM data can be acquired from the same sample without the need to remove the particles from the substrate. It is shown that the real distribution of nanoparticles cannot be resolved by FESEM whereas HAADFSTEM analysis confirms that a distribution of small nanoparticles (d ≈ 12 nm) coexist with large nanoparticles corresponding to a bimodal size distribution. Besides, particles grown under the same conditions have been found to present different structures such as monocrystals, polycrystals or aggregates of smaller particles.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000285904700010 Publication Date 2010-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1388-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.396 Times cited 52 Open Access
Notes Fwo Approved Most recent IF: 4.396; 2010 IF: 4.287
Call Number UA @ lucian @ c:irua:87612 Serial 900
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.
Title Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 21 Issue Pages 270-274
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000220873300024 Publication Date 2004-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2004 IF: 0.898
Call Number UA @ lucian @ c:irua:44291 Serial 901
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.
Title Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages 195307,1-12
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000187163000075 Publication Date 2003-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44290 Serial 902
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N.
Title Electromagnetic effects in high-frequency large-area capacitive discharges : a review Type A1 Journal article
Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 020801
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength k in the plasma becomes comparable to the electrode radius, and the plasma skin depth d becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwells equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.
Address
Corporate Author Thesis
Publisher A v s amer inst physics Place of Publication Melville Editor
Language Wos 000355739500007 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 10 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:123541 Serial 903
Permanent link to this record
 

 
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z.
Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 10 Issue 6 Pages 2468-2474
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000183316500031 Publication Date 2003-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 41 Open Access
Notes Approved Most recent IF: 2.115; 2003 IF: 2.146
Call Number UA @ lucian @ c:irua:103293 Serial 904
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L.
Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 13 Issue 2/4 Pages 237-240
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000176869100035 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 5 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:62427 Serial 905
Permanent link to this record
 

 
Author Čukarić, N.; Tadić, M.; Peeters, F.M.
Title Electron and hole states in a quantum ring grown by droplet epitaxy. Influence of the layer inside the ring opening Type A1 Journal article
Year 2010 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 48 Issue 5 Pages 491-501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of the conduction and valence bands of a quantum ring containing a layer inside the ring opening is modeled This structure (nanocup) consists of a GaAs nanodisk (the cup s bottom) and a GaAs nanoring (the cup s rim) which encircles the disk The whole system is embedded in an (Al Ga)As matrix and its shape resembles realistic ring structures grown by the droplet epitaxy technique The conduction-band states in the structure are modeled by the single-band effective-mass theory while the 4-band Luttinger-Kohn model is adopted to compute the valence-band states We analyze how the electronic structure of the nanocup evolves from the one of a quantum ring when the size of either the nanodisk or the nanoring is changed For that purpose (1) the width of the ring (2) the disk radius and (3) the disk height are separately varied For dimensions typical for experimentally realized structures we find that the electron wavefunctions are mainly localized inside the ring even when the thickness of the Inner layer is 90% of the ring thickness These calculations indicate that topological phenomena like the excitonic Aharonov-Bohm effect are negligibly affected by the presence of the layer inside the ring (C) 2010 Elsevier Ltd All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000284521400005 Publication Date 2010-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.123 Times cited 9 Open Access
Notes ; The authors would like to thank Prof B Partoens for useful discussions This work was supported by the EU NoE SANDiE the Ministry of Science of Serbia the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 2.123; 2010 IF: 1.096
Call Number UA @ lucian @ c:irua:95551 Serial 906
Permanent link to this record
 

 
Author Chang, K.; Li, S.S.; Xia, J.B.; Peeters, F.M.
Title Electron and hole states in diluted magnetic semiconductor quantum dots Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 235203,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222531400048 Publication Date 2004-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69386 Serial 907
Permanent link to this record
 

 
Author Norén, L.; Ting, V.; Withers, R.L.; Van Tendeloo, G.
Title An electron and X-ray diffraction investigation of Ni1+xTe2 and Ni1+xSe2CdI2/NiAs type solid solution phases Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 161 Issue 2 Pages 266-273
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172466400012 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 14 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54712 Serial 908
Permanent link to this record
 

 
Author Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R.
Title Electron anisotropic scattering in gases: a formula for Monte Carlo simulations Type A1 Journal article
Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 65 Issue Pages 037402
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering, previously published in Phys. Rev. A 41, 1112 (1990), which is widely used in Monte Carlo models of gas discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules. Differential cross sections for electron scattering by Ar, N2, and CH4 are constructed on the basis of momentum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of gas discharges.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000174549000088 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 57 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:40179 Serial 909
Permanent link to this record
 

 
Author Kaganovich, I.; Misina, M.; Berezhnoi, S.; Gijbels, R.
Title Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge Type A1 Journal article
Year 2000 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 61 Issue 2 Pages 1875-1889
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron distribution function (EDF) in an electron cyclotron resonance (ECR) discharge is far from Maxwellian. The self-consistent simulation of ECR discharges requires a calculation of the EDF on every magnetic line for various ion density profiles. The straightforward self-consistent simulation of ECR discharges using the Monte Carlo technique for the EDF calculation is very computer time expensive, since the electron and ion time scales are very different. An electron Boltzmann kinetic equation averaged over the fast electron bouncing and pitch-angle scattering was derived in order to develop an effective and operative tool for the fast modeling (FM) of low-pressure ECR discharges. An analytical solution for the EDF in a loss cone was derived. To check the validity of the FM, one-dimensional (in coordinate) and two-dimensional (in velocity) Monte Carlo simulation codes were developed. The validity of the fast modeling method is proved by comparison with the Monte Carlo simulations. The complete system of equations for FM is presented and ready for use in a comprehensive study of ECR discharges. The variations of plasma density and of wall and sheath potentials are analyzed by solving a self-consistent set of equations for the EDF.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000085410600117 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 31 Open Access
Notes Approved Most recent IF: 2.366; 2000 IF: 2.142
Call Number UA @ lucian @ c:irua:34069 Serial 910
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A.
Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 5161-5169
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359499100003 Publication Date 2015-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access OpenAccess
Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127758 Serial 3977
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Q.-Z.; Liu, L.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N.
Title Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025012-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen is studied by different experimental methods and a particle-in-cell/Monte Carlo collision (PIC/MCC) simulation, and compared with the electropositive argon discharge. In comparison with argon, the experimental results show that in an oxygen discharge the resonance peaks in positive-ion density and light intensity tend to occur at larger electrode gaps. Moreover, at electrode gaps L > 2.5 cm, the positive-ion (and electron) density and the light emission drop monotonically in the oxygen discharge upon increasing L, whereas they rise (after an initial drop) in the argon case. At resonance gap the electronegativity reaches its maximum due to the BRH. All these experimental observations are explained by PIC/MCC simulations, which show that in the oxygen discharge the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonance electrons when traversing the bulk, resulting in a suppressed BRH. Both experiment and simulation results show that this effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative. In a pure oxygen discharge, the BRH is suppressed with increasing pressure and almost diminishes at 12 Pa. Finally, the driving frequency significantly affects the BRH, because it determines the phase relation between bulk electric field and sheath electric field.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400014 Publication Date 2013-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 20 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106534 Serial 911
Permanent link to this record
 

 
Author Kálna, K.; Mo×ko, M.; Peeters, F.M.
Title Electron capture in GaAs quantum wells via electron-electron and optic phonon scattering Type A1 Journal article
Year 1996 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 68 Issue Pages 117-119
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996TM84700040 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15802 Serial 912
Permanent link to this record
 

 
Author Van Aert, S.; Geuens, P.; van Dyck, D.; Kisielowski, C.; Jinschek, J.R.
Title Electron channelling based crystallography Type A1 Journal article
Year 2007 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 107 Issue 6/7 Pages 551-558
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000245341300015 Publication Date 2006-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 32 Open Access
Notes Approved Most recent IF: 2.843; 2007 IF: 1.996
Call Number UA @ lucian @ c:irua:64286 Serial 913
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.
Title Electron correlation effects in quantum dots Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 1875-1878
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12204 Serial 914
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Lambin, P.; Van Tendeloo, G.
Title Electron diffraction and microscopy of single-wall carbon nanotube bundles produced by different methods Type A1 Journal article
Year 2002 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 27 Issue 1 Pages 111-118
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000176258200013 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 43 Open Access
Notes Approved Most recent IF: 1.461; 2002 IF: 1.741
Call Number UA @ lucian @ c:irua:54780 Serial 915
Permanent link to this record
 

 
Author Colomer, J.-F.; Van Tendeloo, G.
Title Electron diffraction and microscopy of single-walled carbon nanotube bundles Type H3 Book chapter
Year 2003 Publication Abbreviated Journal
Volume Issue Pages 45-72
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication Boston, Mass. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54859 Serial 916
Permanent link to this record
 

 
Author Luyten, W.; Krekels, T.; Amelinckx, S.; Van Tendeloo, G.; van Dyck, D.; van Landuyt, J.
Title Electron diffraction effects of conical, helically wound, graphite whiskers Type A1 Journal article
Year 1993 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 49 Issue Pages 123-131
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KV56700014 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6784 Serial 917
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; de Keyzer, R.
Title Electron diffraction evidence for ordering of interstitial silver ions in silver bromide microcrystals Type A1 Journal article
Year 1994 Publication Icem Abbreviated Journal
Volume 13 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1994BC23W00081 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10058 Serial 918
Permanent link to this record