toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S. doi  openurl
  Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
  Year 2013 Publication (down) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 37 Pages 19142-19145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330162600042 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ admin @ c:irua:114837 Serial 5985  
Permanent link to this record
 

 
Author Gagea, B.C.; Liang, D.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A. doi  openurl
  Title Synthesis and characterization of nanocrystal zeolite/mesoporous matrix composite material Type P1 Proceeding
  Year 2006 Publication (down) Studies in surface science and catalysis Abbreviated Journal  
  Volume 162 Issue Pages 259-266  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000283580900033 Publication Date 2007-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-2991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99275 Serial 3413  
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Aerts, C.A.; Houthoofd, K.J.; Grobet, P.J.; Jacobs, P.A.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A. pdf  doi
openurl 
  Title Zeotile-2: a microporous analogue of MCM-48 Type A1 Journal article
  Year 2005 Publication (down) Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 7 Issue 7 Pages 861-867  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000230259500006 Publication Date 2005-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54702 Serial 3931  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication (down) RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; url  doi
openurl 
  Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
  Year 2014 Publication (down) RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 49 Pages 25650-25657  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338434500025 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 3 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:125382 Serial 3027  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Sree, S.P.; Gobechiya, E.; Kirschhock, C.E.A.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Anatase TiO2nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts Type A1 Journal article
  Year 2016 Publication (down) RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 46678-46685  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale TiO2 photocatalysts are widely used for biomedical applications, self-cleaning processes and wastewater treatments. The impregnation/deposition of TiO2 nanoparticles is indispensable for facile handling and separation as well as the improvement of their photocatalytic performance. In the present study, ordered mesoporous COK-12 silica thin platelets with a high-aspect-ratio and rough surfaces are demonstrated as a potential nanoporous support for homogeneous TiO2 nanoparticle coatings with high loading up to 16.7 wt%. The photocatalytic composite of COK-12 platelets and TiO2 nanoparticles is characterized in detail by HRSEM, SAXS, XRD, N2 physisorption analysis, solid-state UV-vis spectroscopy, HAADF-STEM, EDX analysis, and electron tomography. HAADF-STEM-EDX and electron tomography studies reveal a homogeneous dispersion of nanosized TiO2 nanoparticles over COK-12 platelets. The final composite material with anatase TiO2 nanoparticles that demonstrate a blueshifted semiconductor band gap energy of 3.2 eV coated on a highly porous COK-12 support shows exceptional photocatalytic catalytic activity for photodegradation of organic dyes (rhodamine 6G and methylene blue) and an organic pollutant (1-adamantanol) under UV light radiation, outperforming the commercial P25 TiO2 (Degussa) catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377254800070 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access  
  Notes L. H. W. and S. T. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number (12M1415N) and (G004613N), respectively. J. A.Mgratefully acknowledge nancial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgium Government (IAP-PAI networking). Approved Most recent IF: 3.108  
  Call Number c:irua:133775 Serial 4074  
Permanent link to this record
 

 
Author Aerts, A.; Follens, L.R.A.; Biermans, E.; Bals, S.; Van Tendeloo, G.; Loppinet, B.; Kirschhock, C.E.A.; Martens, J.A. pdf  doi
openurl 
  Title Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization Type A1 Journal article
  Year 2011 Publication (down) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 10 Pages 4318-4325  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse coreshell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000287584700017 Publication Date 2011-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 22 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:87602 Serial 2155  
Permanent link to this record
 

 
Author Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Design of zeolite by inverse sigma transformation Type A1 Journal article
  Year 2012 Publication (down) Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 12 Pages 1059-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311432600025 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 140 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101783 Serial 661  
Permanent link to this record
 

 
Author Dendooven, J.; Ramachandran, R.K.; Solano, E.; Kurttepeli, M.; Geerts, L.; Heremans, G.; Ronge, J.; Minjauw, M.M.; Dobbelaere, T.; Devloo-Casier, K.; Martens, J.A.; Vantomme, A.; Bals, S.; Portale, G.; Coati, A.; Detavernier, C. url  doi
openurl 
  Title Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition Type A1 Journal article
  Year 2017 Publication (down) Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 1074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl) platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413353500023 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 88 Open Access OpenAccess  
  Notes ; This research was funded by the Research Foundation-Flanders (FWO), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the Flemish Government (Medium-scale research infrastructure funding-Hercules funding). J. D., T. D. and M. M. M. acknowledge the FWO for a research fellowship. S. B. acknowledges the European Research Council, ERC grant no. 335078-Colouratom. For the GISAXS and XRF measurements at SOLEIL, the authors received funding from the European Community's Trans National Access Program CALIPSO. We are also grateful to the SOLEIL and ESRF staff for smoothly running the facilities. The authors thank G. Verellen for his help with drawing the 3D sketches. ; ecas_Sara Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:146668UA @ admin @ c:irua:146668 Serial 4786  
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C. pdf  url
doi  openurl
  Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
  Year 2014 Publication (down) Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6939-6944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000337143900086 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 14 Open Access OpenAccess  
  Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:118393 Serial 3454  
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A. pdf  doi
openurl 
  Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
  Year 2013 Publication (down) Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 5001-5008  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000319008700056 Publication Date 2013-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 22 Open Access  
  Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108774 Serial 3460  
Permanent link to this record
 

 
Author Geerts, L.; Geerts-Claes, H.; Skorikov, A.; Vermeersch, J.; Vanbutsele, G.; Galvita, V.; Constales, D.; Chandran, C.V.; Radhakrishnan, S.; Seo, J.W.; Breynaert, E.; Bals, S.; Sree, S.P.; Martens, J.A. url  doi
openurl 
  Title Spherical core–shell alumina support particles for model platinum catalysts Type A1 Journal article
  Year 2021 Publication (down) Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 7 Pages 4221-4232  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract γ- and δ-alumina are popular catalyst support materials. Using a hydrothermal synthesis method starting from aluminum nitrate and urea in diluted solution, spherical core–shell particles with a uniform particle size of about 1 μm were synthesized. Upon calcination at 1000 °C, the particles adopted a core–shell structure with a γ-alumina core and δ-alumina shell as evidenced by 2D and 3D electron microscopy and<sup>27</sup>Al magic angle spinning nuclear magnetic resonance spectroscopy. The spherical alumina particles were loaded with Pt nanoparticles with an average size below 1 nm using the strong electrostatic adsorption method. Electron microscopy and energy dispersive X-ray spectroscopy revealed a homogeneous platinum dispersion over the alumina surface. These platinum loaded alumina spheres were used as a model catalyst for bifunctional catalysis. Physical mixtures of Pt/alumina spheres and spherical zeolite particles are equivalent to catalysts with platinum deposited on the zeolite itself facilitating the investigation of the catalyst components individually. The spherical alumina particles are very convenient supports for obtaining a homogeneous distribution of highly dispersed platinum nanoparticles. Obtaining such a small Pt particle size is challenging on other support materials such as zeolites. The here reported and well-characterized Pt/alumina spheres can be combined with any zeolite and used as a bifunctional model catalyst. This is an interesting strategy for the examination of the acid catalytic function without the interference of the supported platinum metal on the investigated acid material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621767000026 Publication Date 2021-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0A5417N G038116N ; Vlaamse regering, Methusalem ; Hercules Foundation, AKUL/13/19 ; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:176021 Serial 6679  
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Vosch, T.; Ke, X.; Giebeler, L.; Oswald, S.; Houthoofd, K.; Jammaer, J.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A.; Baron, G.V.; Sels, B.F.; Denayer, J.F.M. pdf  doi
openurl 
  Title Graphitic nanocrystals inside the pores of mesoporous silica : synthesis, characterization and an adsorption study Type A1 Journal article
  Year 2011 Publication (down) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 144 Issue 1/3 Pages 120-133  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work presents a new carbonsilica hybrid material, denoted as CSM, with remarkable sorption properties. It consists of intraporous graphitic nanocrystals grown in the pores of mesoporous silica. CSM is obtained by a subtle incipient wetness impregnation of Al-containing mesoporous silica with furfuryl alcohol (FA)/hemelitol solutions. Both the volume match of the impregnation solution with that of the silica template pore volume, and the presence of Al3+ in the silica, are crucial to polymerize FA selectively inside the mesopores. Carbonization of the intraporous polymer was then performed by pyrolysis under He up to 1273 K. The resulting CSMs were examined by SEM, HRTEM, 27Al MAS NMR, N2 adsorption, XRD, TGA, TPD, XPS, pycnometry and Raman spectroscopy. Mildly oxidized graphitic-like carbon nanoblocks, consisting of a few graphene-like sheets, were thus identified inside the template mesopores. Random stacking of these carbon crystallites generates microporosity resulting in biporous materials at low carbon content and microporous materials at high carbon loadings. Very narrow pore distributions were obtained when pyrolysis was carried out under slow heating rate, viz. 1 K min−1. Adsorption and shape selective properties of the carbon filled mesoporous silica were studied by performing pulse chromatography and breakthrough experiments, and by measuring adsorption isotherms of linear and branched alkanes. Whereas the parent mesoporous silica shows unselective adsorption, their CSM analogues preferentially adsorb linear alkanes. The sorption capacity and selectivity can be adjusted by changing the pore size of the template or by varying the synthesis conditions. A relation between the carbon crystallites size and the shape selective behaviour of the corresponding CSM for instance is demonstrated. Most interestingly, CSM shows separation factors for linear and branched alkanes up to values comparable to those of zeolitic molecular sieves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000293435400016 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.615; 2011 IF: 3.285  
  Call Number UA @ lucian @ c:irua:92325 Serial 1380  
Permanent link to this record
 

 
Author Verlooy, P.L.H.; Robeyns, K.; van Meervelt, L.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A. doi  openurl
  Title Synthesis and characterization of the new cyclosilicate hydrate (hexamethyleneimine)4.[Si8O16(OH)4].12H2O Type A1 Journal article
  Year 2010 Publication (down) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 130 Issue 1/3 Pages 14-20  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new cyclosilicate hydrate with composition (C6H14N)4·[Si8O16(OH)4]·12H2O was crystallized and the structure determined by single-crystal X-ray diffraction. The structure, described by the tetragonal space group I41/a, with unit cell dimensions of a = 39.2150(2) Å and c = 14.1553(2) Å, contains columns of hydrogen-bonded cubic octamer silicate anions. The space between silicate columns holds hydrogen-bonded water and protonated hexamethyleneimine molecules compensating the negative charge of the silicate. The crystal water can be removed resulting in a rearrangement of the columns into orthorhombic symmetry. Removal of the organic moiety causes amorphisation. Flash evacuation results in a new microporous material with pore volumes typical of a zeolite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000275702600003 Publication Date 2009-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.615; 2010 IF: 3.220  
  Call Number UA @ lucian @ c:irua:82448 Serial 3418  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C. doi  openurl
  Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
  Year 2014 Publication (down) Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 32 Issue 1 Pages 01a123  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335847600023 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access  
  Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322  
  Call Number UA @ admin @ c:irua:117296 Serial 5936  
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
  Year 2012 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 26 Pages 10911-10919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305863900037 Publication Date 2012-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 83 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:100330 Serial 514  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A. doi  openurl
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year 2017 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 819-828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000392459300041 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access  
  Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492  
Permanent link to this record
 

 
Author Liang, D.; Follens, L.R.A.; Aerts, A.; Martens, J.A.; Van Tendeloo, G.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation Type A1 Journal article
  Year 2007 Publication (down) Journal of physical chemistry C Abbreviated Journal J Phys Chem C  
  Volume 111 Issue 39 Pages 14283-14285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000249838300002 Publication Date 2007-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access  
  Notes ESA; IWT – Flanders; FWO Approved Most recent IF: 4.536; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66617 Serial 3481  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
  Year 2015 Publication (down) Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 3 Issue 3 Pages 19884-19891  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362041300033 Publication Date 2015-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 9 Open Access  
  Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443  
  Call Number c:irua:132567 Serial 3959  
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J. pdf  doi
openurl 
  Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
  Year 2016 Publication (down) Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 4 Pages 12790-12798  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000382015100012 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 26 Open Access  
  Notes Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:137188 Serial 4395  
Permanent link to this record
 

 
Author Pulinthanathu Sree, S.; Dendooven, J.; Geerts, L.; Ramachandran, R.K.; Javon, E.; Ceyssens, F.; Breynaert, E.; Kirschhock, C.E.A.; Puers, R.; Altantzis, T.; Van Tendeloo, G.; Bals, S.; Detavernier, C.; Martens, J.A. pdf  url
doi  openurl
  Title 3D porous nanostructured platinum prepared using atomic layer deposition Type A1 Journal article
  Year 2017 Publication (down) Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 5 Issue 5 Pages 19007-19016  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and easy to handle 3D porous platinum structure was created via replicating the 3D channel system

of an ordered mesoporous silica material using atomic layer deposition (ALD) over micrometer distances.

After ALD of Pt in the silica material, the host template was digested using hydrogen fluoride (HF). A fully

connected ordered Pt nanostructure was obtained with morphology and sizes corresponding to that of

the pores of the host matrix, as revealed with high-resolution scanning transmission electron

microscopy and electron tomography. The Pt nanostructure consisted of hexagonal Pt rods originating

from the straight mesopores (11 nm) of the host structure and linking features resulting from Pt

replication of the interconnecting mesopore segments (2–4 nm) present in the silica host structure.

Electron tomography of partial replicas, made by incomplete infilling of Zeotile-4 material with Pt,

provided insight in the connectivity and formation mechanism of the Pt nanostructure by ALD. The Pt

replica was evaluated for its potential use as electrocatalyst for the hydrogen evolution reaction, one of

the half-reactions of water electrolysis, and as microelectrode for biomedical sensing. The Pt replica

showed high activity for the hydrogen evolution reaction and electrochemical characterization revealed

a large impedance improvement in comparison with reference Pt electrodes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411232100010 Publication Date 2017-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 9 Open Access OpenAccess  
  Notes This work was supported by the Flemish government through long-term structural funding (Methusalem) to JAM and FWO for a research project (G0A5417N). JD, TA and FC acknowledge Flemish FWO for a post-doctoral fellowship. S. B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 8.867  
  Call Number EMAT @ emat @ c:irua:144624 c:irua:144624 c:irua:144624UA @ admin @ c:irua:144624 Serial 4634  
Permanent link to this record
 

 
Author Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking Type A1 Journal article
  Year 2013 Publication (down) Journal of catalysis Abbreviated Journal J Catal  
  Volume 300 Issue Pages 70-80  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract MFI zeolite nanosheets with thickness of 2 and 8 nm were synthesized, transformed into bifunctional catalysts by loading with platinum and tested in n-decane isomerization and hydrocracking. Detailed analysis of skeletal isomers and hydrocracked products revealed that the MFI nanosheets display transition-state shape-selectivity similar to bulk MFI zeolite crystals. The suppressed formation of bulky skeletal isomers and C5 cracking products are observed both in the nanosheets and the bulk crystals grown in three dimensions. This is typical for restricted transition-state shape-selectivity, characteristic for the MFI type pores. It is a first clear example of transition-state shape-selectivity inside a zeolitic nanosheet. Owing to the short diffusion path across the sheets, expression of diffusion-based discrimination of reaction products in the MFI nanosheets was limited. The 2-methylnonane formation among monobranched C10 isomers and 2,7-dimethyloctane among dibranched C10 isomers, which in MFI zeolite are favored by product diffusion, was much less favored on the nanosheets compared to the reference bulk ZSM-5 material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000317558000009 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 121 Open Access  
  Notes Methusalem; IAP; Countatoms Approved Most recent IF: 6.844; 2013 IF: 6.073  
  Call Number UA @ lucian @ c:irua:106186 Serial 2181  
Permanent link to this record
 

 
Author Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Activity versus selectivity in photocatalysis : morphological or electronic properties tipping the scale Type A1 Journal article
  Year 2016 Publication (down) Journal of catalysis Abbreviated Journal J Catal  
  Volume 344 Issue Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper a structure-activity and structure-selectivity relation is established for three commercial TiO2 sources (P25, P90, and PC500). Morphological and electronic parameters of the photocatalysts are determined using widely applicable and inexpensive characterization procedures. More specifically, the electronic properties are rigorously characterized using an electron titration method yielding quantitative information on the amount of defect sites present in the catalyst. Surface photovoltage measurements on the other hand provide complementary information on the charge carrier recombination process. As model reaction, the degradation of a solid layer of stearic acid is studied using an in situ FTIR reaction cell that enables to investigate the catalyst surface and possible formation of reaction intermediates while the reactions are ongoing. We show that the order of photocatalytic conversion is PC500 > P90 > P25, matching the order of favorable morphological properties. In terms of selectivity to CO2 formation (complete mineralization), however, this trend is reversed: P25 > P90 > PC500, now matching the order of advantageous electronic properties, i.e. low charge carrier recombination and high charge carrier generation. With this we intend to provide new mechanistic insights using a wide variety of physical, (wet) chemical and operando analysis methods that aid the development of performant (self-cleaning) photocatalytic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390182800022 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 10 Open Access  
  Notes ; M.K. acknowledges Flemish Agency for Innovation & Entrepreneurship for the doctoral scholarship. S.W.V. acknowledges the Fonds Wetenschappelijk Onderzoek (FWO) for a post-doctoral fellowship. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:136339 Serial 5926  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E. pdf  url
doi  openurl
  Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
  Year 2015 Publication (down) Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue 49 Pages 2358-2365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000349806400047 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330  
  Call Number c:irua:127695 Serial 307  
Permanent link to this record
 

 
Author Villani, K.; Vermandel, W.; Smets, K.; Liang, D.; Van Tendeloo, G.; Martens, J.A. pdf  doi
openurl 
  Title Platinum particle size and support effects in NOx mediated carbon oxidation over platinum catalysts Type A1 Journal article
  Year 2006 Publication (down) Environmental science & technology Abbreviated Journal Environ Sci Technol  
  Volume 40 Issue 8 Pages 2727-2733  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AlPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 2040 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AlPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000236992700038 Publication Date 2006-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 29 Open Access  
  Notes Comet; Goa Approved Most recent IF: 6.198; 2006 IF: 4.040  
  Call Number UA @ lucian @ c:irua:103628 Serial 2651  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year 2017 Publication (down) Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. pdf  url
doi  openurl
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year 2017 Publication (down) Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 1039-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398182800002 Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess  
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication (down) Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication (down) Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: