toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Samae, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Koizumi, S.; Mussi, A.; Schryvers, D.; Idrissi, H. pdf  url
doi  openurl
  Title Stress-induced amorphization triggers deformation in the lithospheric mantle Type A1 Journal article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 591 Issue 7848 Pages 82-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The mechanical properties of olivine-rich rocks are key to determining the mechanical coupling between Earth's lithosphere and asthenosphere. In crystalline materials, the motion of crystal defects is fundamental to plastic flow(1-4.) However, because the main constituent of olivine-rich rocks does not have enough slip systems, additional deformation mechanisms are needed to satisfy strain conditions. Experimental studies have suggested a non-Newtonian, grain-size-sensitive mechanism in olivine involving grain-boundary sliding(5,6). However, very few microstructural investigations have been conducted on grain-boundary sliding, and there is no consensus on whether a single or multiple physical mechanisms are at play. Most importantly, there are no theoretical frameworks for incorporating the mechanics of grain boundaries in polycrystalline plasticity models. Here we identify a mechanism for deformation at grain boundaries in olivine-rich rocks. We show that, in forsterite, amorphization takes place at grain boundaries under stress and that the onset of ductility of olivine-rich rocks is due to the activation of grain-boundary mobility in these amorphous layers. This mechanism could trigger plastic processes in the deep Earth, where high-stress conditions are encountered (for example, at the brittle-plastic transition). Our proposed mechanism is especially relevant at the lithosphere-asthenosphere boundary, where olivine reaches the glass transition temperature, triggering a decrease in its viscosity and thus promoting grain-boundary sliding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626921700014 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 40.137  
  Call Number UA @ admin @ c:irua:176656 Serial 6738  
Permanent link to this record
 

 
Author Hendrickx, M.; Tang, Y.; Hunter, E.C.; Battle, P.D.; Hadermann, J. pdf  url
doi  openurl
  Title Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba) Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume 295 Issue Pages 121914  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of A(2)LaFe(2)SbO(9) (A = Ca, Sr, Ba) perovskites appeared monophasic to X-ray or neutron powder diffraction but a single-crystal study utilising transmission electron microscopy revealed a greater level of complexity. Although local charge balance is maintained, compositional and structural variations are present among and within the submicron-sized crystals. Despite the inhomogeneity, A = Ca is monophasic with a partially-ordered distribution of Fe3+ and Sb5+ cations across two crystallographically-distinct octahedral sites, i.e. Ca2La(Fe1.25Sb0.25)(2d) (Fe0.75Sb0.75)(2c)O-9. For A = Sr or Ba, the inhomogeneities result in differences in the filling patterns of the octahedra and the ordering of the B cations. Particles of A = Sr contain a phase (Fe:Sb similar to 2:1) without B cation ordering and one (Fe:Sb similar to 1:1) with B cation ordering. Monophasic A = Ba lacks long-range cation order although ordered nanodomains are present within the disordered phase. The temperature dependence of the magnetic properties of each sample is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615711800013 Publication Date 2020-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:176663 Serial 6739  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  url
doi  openurl
  Title Two-dimensional carbon nitride C₆N nanosheet with egg-comb-like structure and electronic properties of a semimetal Type A1 Journal article
  Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 32 Issue 21 Pages 215702  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along both X and Y direction and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in the IR range of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624531500001 Publication Date 2020-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:176648 Serial 6740  
Permanent link to this record
 

 
Author Chen, X.; Li, L.; Peeters, F.M.; Sanyal, B. url  doi
openurl 
  Title Two-dimensional oxygen functionalized honeycomb and zigzag dumbbell silicene with robust Dirac cones Type A1 Journal article
  Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue 2 Pages 023007  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dumbbell-like structures are recently found to be energetically favored in group IV two-dimensional (2D) materials, exhibiting rich physics and many interesting properties. In this paper, using first-principles calculations, we have investigated the oxidized form of the hexagonal honeycomb (ODB-h) and zigzag dumbbell silicene (ODB-z). We confirm that both oxidization processes are energetically favorable, and their phonon spectra further demonstrate the dynamic stability. Contrary to the pristine dumbbell silicene structures (PDB-h and PDB-z silicene), these oxidized products ODB-h and ODB-z silicene are both semimetals with Dirac cones at the Fermi level. The Dirac cones of ODB-h and ODB-z silicene are at the K point and between Y and Gamma points respectively, possessing high Fermi velocities of 3.1 x 10(5) m s(-1) (ODB-h) and 2.9-3.4 x 10(5) m s(-1) (ODB-z). The origin of the Dirac cones is further explained by tight-binding models. The semimetallic properties of ODB-h and ODB-z are sensitive to compression due to the self-absorption effect, but quite robust against the tensile strain. These outstanding properties make oxidized dumbbell silicene a promising material for quantum computing and high-speed electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000616114900001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 1 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:176575 Serial 6741  
Permanent link to this record
 

 
Author Jafarzadeh, A. url  openurl
  Title First-principle studies of plasma-catalyst interactions for greenhouse gas conversion Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 163 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174073 Serial 6765  
Permanent link to this record
 

 
Author Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J. doi  openurl
  Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 26 Pages 262903  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608049700003 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:176053 Serial 6766  
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N. doi  openurl
  Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
  Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas  
  Volume 28 Issue 1 Pages 013510  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629931300002 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:177669 Serial 6767  
Permanent link to this record
 

 
Author Ranjbar, S. file  openurl
  Title Mathematical model of plasma therapy on bacterial growth Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 95 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175471 Serial 6768  
Permanent link to this record
 

 
Author Kolev, S.; Paunska, T.; Trenchev, G.; Bogaerts, A. url  doi
openurl 
  Title Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge Type P1 Proceeding
  Year 2020 Publication Technologies Abbreviated Journal  
  Volume Issue Pages 012007  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 dissociation and its subsequent conversion into added-value chemicals is a promising strategy for recycling CO2 gas into reusable products. One of the possible methods is direct plasma-induced dissociation. In this work we study the efficiency of CO2 dissociation in pulsed atmospheric-pressure gas discharge between two conducting electrodes by a 0-D numerical plasma model. The purpose of the study is to provide results on the optimal conditions of CO2 conversion with respect to the energy efficiency and dissociation by varying the maximum power density value and the pulse length. The power density is directly related to the discharge current and the reduced electric field in the discharge. We consider pulse lengths in the range from hundreds of nanosecond up to milliseconds. The results obtained show that the dissociation degree and energy efficiency are sensitive to the pulse length (duration) and the power density, so that a considerable improvement of the discharge performance can be achieved by fine-tuning these parameters. The study is intended to provide guidance in designing an experimental set-up and a power supply with the characteristics necessary to achieve optimal conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593712900007 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 1492 Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174447 Serial 6769  
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 15 Pages 3789-3804  
  Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541499100001 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:168851 Serial 6770  
Permanent link to this record
 

 
Author Kaushik, N.K.; Bekeschus, S.; Tanaka, H.; Lin, A.; Choi, E.H. url  doi
openurl 
  Title Plasma medicine technologies Type Editorial
  Year 2021 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 11 Issue 10 Pages 4584-4  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This Special Issue, entitled “Plasma Medicine Technologies”, covers the latest remarkable developments in the field of plasma bioscience and medicine. Plasma medicine is an interdisciplinary field that combines the principles of plasma physics, material science, bioscience, and medicine, towards the development of therapeutic strategies. A study on plasma medicine has yielded the development of new treatment opportunities in medical and dental sciences. An important aspect of this issue is the presentation of research underlying new therapeutic methods that are useful in medicine, dentistry, sterilization, and, in the current scenario, that challenge perspectives in biomedical sciences. This issue is focused on basic research on the characterization of the bioplasma sources applicable to living cells, especially to the human body, and fundamental research on the mutual interactions between bioplasma and organic–inorganic liquids, and bio or nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000662527200001 Publication Date 2021-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 1.679  
  Call Number UA @ admin @ c:irua:178139 Serial 6771  
Permanent link to this record
 

 
Author Wang, W.; Butterworth, T.; Bogaerts, A. pdf  doi
openurl 
  Title Plasma propagation in a single bead DBD reactor at different dielectric constants : insights from fluid modelling Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 21 Pages 214004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed bed dielectric barrier discharge (PB-DBD) plasma reactors are very promising for various plasma catalysis applications, but the exact mechanisms of plasma-catalyst interaction are far from understood, because the plasma discharge and catalyst/packing properties are mutually dependent. To better understand the effect of packing dielectric material on the electrical plasma properties, we study here a single bead DBD plasma reactor operating in dry air, with beads of different dielectric constant and for different applied voltages, by means of fluid modelling validated by optical imaging experiments. Our study reveals that the plasma in the single bead DBD reactor can manifest itself in two different modalities, i.e. (a) polar discharges at the bead poles in contact with the electrodes, and (b) a streamer discharge caused by surface ionization waves, which bridges the gas gap. Beads with high dielectric constant result in localised electric field enhancement and hence yield a reduction of the applied voltage required for plasma production. At low applied voltage, the discharge appears as polar discharges between the bead and the electrodes, and upon higher voltage it undergoes a transition into a bridging streamer discharge. The transition voltage to the streamer mode rises for beads with higher dielectric constant. These observations are important for plasma catalysis applications. A higher dielectric constant yields a higher electric field and thus higher average electron energy and density, giving rise to more reactive species, but it also yields a confined discharge near the contact points of packing beads, limiting the interaction area between the catalyst and the active plasma species. In addition, our model reveals that the dielectric bead behaves as a capacitor and traps charges, which can explain the significant occurrence of partial discharging in PB-DBDs and non-parallelogram shaped Lissajous plots. Hence, equivalent circuit modelling of PB-DBDs should take into account the role of packing beads in charge trapping as a capacitor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626451000001 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:177571 Serial 6772  
Permanent link to this record
 

 
Author Kaliyappan, P.; Paulus, A.; D’Haen, J.; Samyn, P.; Uytdenhouwen, Y.; Hafezkhiabani, N.; Bogaerts, A.; Meynen, V.; Elen, K.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma-catalytic CO₂ dissociation using a packed bed DBD plasma reactor Type A1 Journal article
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 46 Issue Pages 101468  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis, a promising technology for conversion of CO2 into value-added chemicals near room temperature, is gaining increasing interest. A dielectric barrier discharge (DBD) plasma has attracted attention due to its simple design and operation at near ambient conditions, ease to implement catalysts in the plasma zone and upscaling ability to industrial applications. To improve its main drawbacks, being relatively low conversion and energy efficiency, a packing material is used in the plasma discharge zone of the reactor, sometimes decorated by a catalytic material. Nevertheless, the extent to which different properties of the packing material influence plasma performance is still largely unexplored and unknown. In this study, the particular effect of synthesis induced differences in the morphology of a TiO2 shell covering a SiO2 core packing material on the plasma conversion of CO2 is studied. TiO2 has been successfully deposited around 1.6–1.8 mm sized SiO2 spheres by means of spray coating, starting from aqueous citratoperoxotitanate(IV) precursors. Parameters such as concentration of the Ti(IV) precursor solutions and addition of a binder were found to affect the shells’ properties and surface morphology and to have a major impact on the CO2 conversion in a packed bed DBD plasma reactor. Core-shell SiO2@TiO2 obtained from 0.25 M citratoperoxotitante(IV) precursors with the addition of a LUDOX binder showed the highest CO2 conversion 37.7% (at a space time of 70 s corresponding to an energy efficiency of 2%) and the highest energy efficiency of 4.8% (at a space time of 2.5 s corresponding to a conversion of 3%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634280300004 Publication Date 2021-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.292  
  Call Number UA @ admin @ c:irua:175958 Serial 6773  
Permanent link to this record
 

 
Author Uytdenhouwen, Y. url  openurl
  Title Tuning the performance of a DBD plasma reactor for CO2 reforming Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 303 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174026 Serial 6774  
Permanent link to this record
 

 
Author Cui, W.; Hu, Z.-Y.; Unocic, R.R.; Van Tendeloo, G.; Sang, X. pdf  url
doi  openurl
  Title Atomic defects, functional groups and properties in MXenes Type A1 Journal article
  Year 2021 Publication Chinese Chemical Letters Abbreviated Journal Chinese Chem Lett  
  Volume 32 Issue 1 Pages 339-344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract MXenes, a new family of functional two-dimensional (2D) materials, have shown great potential for an extensive variety of applications within the last decade. Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties. In this review, we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes, and how to control them to directly influence various properties (e.g., electron transport, Li' adsorption, hydrogen evolution reaction (HER) activity, and magnetism) of 2D MXenes materials. Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed. The review thus provides perspectives on property optimization through atomic defect engineering, and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618541800057 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1001-8417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.932 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 1.932  
  Call Number UA @ admin @ c:irua:177568 Serial 6777  
Permanent link to this record
 

 
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2002124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author Akamine, H.; Mitsuhara, M.; Nishida, M.; Samaee, V.; Schryvers, D.; Tsukamoto, G.; Kunieda, T.; Fujii, H. pdf  url
doi  openurl
  Title Precipitation behaviors in Ti-2.3 Wt Pct Cu alloy during isothermal and two-step aging Type A1 Journal article
  Year 2021 Publication Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science Abbreviated Journal Metall Mater Trans A  
  Volume 52 Issue Pages 2760-2772  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Time evolution of precipitates related to age-hardening in Ti-2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the alpha phase: (10 (3) over bar)//(0001)(alpha) and [0 (1) over bar0]//respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening. (C) The Minerals, Metals & Materials Society and ASM International 2021  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644823000001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-5623 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.874 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 1.874  
  Call Number UA @ admin @ c:irua:178222 Serial 6786  
Permanent link to this record
 

 
Author Fu, Y.; Ding, L.; Singleton, M.L.; Idrissi, H.; Hermans, S. pdf  doi
openurl 
  Title Synergistic effects altering reaction pathways : the case of glucose hydrogenation over Fe-Ni catalysts Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 288 Issue Pages 119997  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon black (CB) supported Ni, Fe, or Fe-Ni alloy catalysts were synthesized by sol-gel to elucidate the reaction pathways over each catalyst, as well as synergistic effects in glucose to sorbitol hydrogenation. The bimetallic materials presented small and alloyed nanoparticles that were richer in reduced metallic sites at the surface than their monometallic counterparts. Glucose isomerization to fructose was favoured over Fe/CB, while glucose hydrogenation to sorbitol is the dominating pathway over Ni/CB catalyst. By contrast, sorbitol production was promoted and undesired isomerization was suppressed when Fe and Ni formed a nanoalloy. In addition, the alloy catalyst presented better stability than the corresponding monometallic catalyst. A comparison with a mechanical mixture of Fe/CB and Ni/CB monometallic catalysts demonstrated the synergy at the nanoscale in the alloy. By comparing different Fe:Ni ratios, the 1:1 formulation was identified as the best compromise to achieve a high activity while maintaining high sorbitol selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632996500002 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177621 Serial 6789  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. url  doi
openurl 
  Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue 1 Pages 6423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632047000003 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.259  
  Call Number UA @ admin @ c:irua:177634 Serial 6791  
Permanent link to this record
 

 
Author Skorikov, A. openurl 
  Title Fast approaches for investigating 3D elemental distribution in nanomaterials Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 143 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178855 Serial 6795  
Permanent link to this record
 

 
Author van der Jeught, S.; Muyshondt, P.G.G.; Lobato, I. url  doi
openurl 
  Title Optimized loss function in deep learning profilometry for improved prediction performance Type A1 Journal article
  Year 2021 Publication JPhys Photonics Abbreviated Journal  
  Volume 3 Issue 2 Pages 024014  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single-shot structured light profilometry (SLP) aims at reconstructing the 3D height map of an object from a single deformed fringe pattern and has long been the ultimate goal in fringe projection profilometry. Recently, deep learning was introduced into SLP setups to replace the task-specific algorithm of fringe demodulation with a dedicated neural network. Research on deep learning-based profilometry has made considerable progress in a short amount of time due to the rapid development of general neural network strategies and to the transferrable nature of deep learning techniques to a wide array of application fields. The selection of the employed loss function has received very little to no attention in the recently reported deep learning-based SLP setups. In this paper, we demonstrate the significant impact of loss function selection on height map prediction accuracy, we evaluate the performance of a range of commonly used loss functions and we propose a new mixed gradient loss function that yields a higher 3D surface reconstruction accuracy than any previously used loss functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641030000001 Publication Date 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2515-7647 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178171 Serial 6797  
Permanent link to this record
 

 
Author Pedrazo Tardajos, A. openurl 
  Title Advanced graphene supports for 3D in situ transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 247 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is an ideal tool to investigate nanomaterials. The information from TEM experiments allows us to link the structure and composition of nanomaterials to their intrinsic physical properties. However, despite the significant evolution of the TEM field during the last two decades, major progress is still possible through the development of optimal TEM techniques and supports. The results presented in this thesis focus on the optimization of sample supports and their application. Among the different options, graphene has previously been reported as useful sample support for electron microscopy due to its unparalleled properties, for example, it is the thinnest known support and provides a protective effect to the sample under investigation. Unfortunately, commercial graphene grids show poor quality, in terms of intactness and cleanness, inhibiting their wide application within the field. Therefore, this thesis focuses on the application of optimized graphene TEM grids, obtained by transferring high quality graphene using an advanced procedure. This improvement on the transfer has enabled the visualization of materials with low contrast and high sensitivity towards the electron beam, such as surface ligands capping gold nanoparticles or metal halide perovskites. Furthermore, the implemented protocol is not only of interest for conventional TEM grids but also a major benefit for in situ TEM studies, where the sample is investigated in real time under certain stimuli. Hence, the same graphene transfer technology can be also applied to advanced in situ MEMS holders dedicated for both heating and gas experiments, where the thickness and insulating nature of the silicon nitride (Si3N4) support may hamper some applications. By engineering periodic arrays of holes in their Si3N4 membrane by focused ion beam, onto which the graphene is transferred, it has been possible to get proof-of-concept 3D in situ investigations of heat-induced morphological and compositional transformations of complex nanosystems. As an example, it has enabled the investigation of the possible phase-transition of metal halide perovskites upon heating using 2D and 3D structural characterization. Moreover, it has allowed the study of in situ three-dimensional nanoparticle dynamics during gas phase catalysis as well as the first steps that would lead towards the design and creation of the first Graphene Gas Cell. Consequently, implementation of the advanced graphene transfer technology described in this thesis is envisaged to impact a broad range of future experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181143 Serial 6836  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Du, K. url  openurl
  Title In situ TEM study on the manipulation of ferroelectrics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 91 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The strong correlated oxide systems attract a lot of attentions of scientists recently, the coexistence and interplay between various degrees of freedom, such as charge, spin and orbital, has been demonstrated to induce some fancy physical properties and phenomenon, including metal-insulator transition, high temperature superconductivity, colossal magnetoresistance. As a part of the strong correlated oxide systems, the ferroelectrics is abundant in both physical properties and application. First, if the electric dipole continuously rotating around a stable core then a topological structure is produced. If people could manipulate the topological structure and simultaneously observe the structure evolution, with external field applied on the topological structure, then it is very likely for such kind of ferroelectrics to be the next generation of storage, for it is reported to need low power input and produce high density of storage. In the other hand, in solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, such as ferroelectricity and ferromagnetism, antiferroelectricity and antiferromagnetism, but ferrielectricity and ferrimagnetism kept telling a disparate story in microscopic level. The claimed “ferrielectrics” in existing research is equivalent to ferroelectric ones, thus the findings of such a real irreducible solids would complete the last piece of the ferroelectrics family. While solving the above two questions remain challengeable: the size of topological structure is small (typically below 10 nm), general characterization methods are insufficient for such high demand on space resolution, not to mention manipulating and observing its dynamic behavior at an atomic level. Here, employing the spherical aberration corrected electron microscope, we applied external field (heating and bias) on ferroelectrics. Combined with high-end characterization methods including the high-angle annular dark field (HAADF-STEM) image, Electron Energy Loss Spectroscopy (EELS) and integrated differential phase contrast (iDPC), the dynamic evolution of ferroelectrics are observed and analyzed. The main findings of this paper could be concluded as listed here: (1) PbTiO3(001)// SrTiO3(001) is grown on DyScO3 and SrRuO3 by pusled laser deposition, the atomical EDS mapping results reveal that the interface between PTO and STO is atomically sharp. Increasing the thickness of PTO from 1 uc to 21 uc, the topological structure wihtin PTO layer would transform from a/c domain to wave, vortex and finally flux closure domain. The geometric phase analysis results (GPA) reveal that above topological structures are corresponding to various strain. (2) Combined with in-situ biasing holder, the electric bias was applied on polar vortex, and it evolved from vortex (0 V) to polar wave (2 V) and finally polar down (5 V). EELS analysis was performed and we find that negative charge is gathered at vortex core, which turns the Ti4+ to Ti3+ there. The oxygen vacancy at negative polarization surface and the negative charge at the positive polarization surface realized the polarization screening of polar down domain. (3) Through the atomic inspection and analysis on lattice structure of BaFe2Se3, the near ladders within single unit are found to be different in degree of tetramerization, thus leading to a residual polarization along the a-axis. The further in-situ heating and biasing experiment was conducted on BaFe2Se3, and the strong and weak ladders are proved to be independent for their behavior under external field. This findings distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179310 Serial 6842  
Permanent link to this record
 

 
Author Prabhakara, V. url  openurl
  Title Strain measurement for semiconductor applications with Raman spectroscopy and Transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 149 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scaling down the size of transistors has been a trend for several decades which has led to improved transistor performance, increased transistor density and hence the overall computation power of IC chips. The trend slowed in recent years due to reliability and power consumption issues at the nanoscale. Hence strain is introduced into transistor channels that has beneficial effects on improving the mobility of charge carriers, providing an alternative pathway for enhancing transistor performance. Therefore, monitoring strain is vital for the semiconductor industry. With the recent trend of decreasing device dimensions (FinFETS ~ 10-20nm) and strain modulation being used throughout, industry needs a reliable and fast method as quality control or defect characterisation. Such a universal strain measurement method does not exist, and one relies on a combination of quantitative in-line methods and complex off-line approaches. In this thesis, I investigated TEM and Raman spectroscopy-based methodologies for strain measurement. In terms of TEM methodologies, advancements are made for the STEM moiré imaging, targeting strain spatial resolution enhancement. I introduce advanced quadrature demodulation and phase stepping interferometry applied to STEM moiré that greatly enhances the spatial resolution while providing enhanced field of view and sensitivity for strain measurement. We introduce ways to reduce scan distortions in strain maps using an alternative scan strategy called “Block scanning” and the non-linear regression applied for strain extraction. Prospects for 3D strain analysis using high-resolution tomography is also investigated which gives direct access for the full second order strain tensors calculation. Finally, we compare strain measurements from TEM techniques with inline techniques like Raman spectroscopy. Raman stress measurement involves sensitive identification of the TO and LO phonon peaks. Raman spectrum of strained Ge transistor channel consists of strongly overlapping peaks within the spectral resolution of the spectrometer. Hence, the process of deconvolution of the two peaks is rather challenging. Hence, we explore new polarisation geometries like radially polarised incoming light which was shown to ease the deconvolution problem resulting in improved precision for Raman stress–strain measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182261 Serial 6847  
Permanent link to this record
 

 
Author Shi, R.; Choudhuri, D.; Kashiwar, A.; Dasari, S.; Wang, Y.; Banerjee, R.; Banerjee, D. doi  openurl
  Title α phase growth and branching in titanium alloys Type A1 Journal article
  Year 2021 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The morphology and spatial distribution of alpha (α) precipitates have been mapped as a function of Mo content in Ti-Mo binary alloys employing a combinatorial approach. Heat-treatments were carried out on compositionally graded Ti-xMo samples processed using a rapid throughput laser engineered net shape (LENS) process. The composition space spans 1.5 at% to 6 at% Mo with ageing at 750°C, 650°C and 600°C following a β solution treatment. Three distinct regimes of α morphology and distribution were observed. These are colony-dominated microstructures originating from grain boundary α allotriomorphs, bundles of intragranular α laths, and homogeneously distributed individual fine-scale α laths. Branching of the α precipitates was observed in all these domains in a manner reminiscent of solid-state dendritic growth. The phenomenon is particularly apparent at low volume fractions of α. Similar features are present in a wide variety of alloy compositions. 3-dimensional features of such branched structures have been analysed. Simulation of the branching process by phase field methods incorporating anisotropy in the α/β interface energy and elasticity suggests that it can be initiated at growth ledges present at broad faces of the α laths, driven by the enhancement of the diffusion flux at these steps. The dependence of branching on various parameters such as supersaturation and diffusivity, and microstructural features like ledge height and distribution and the presence of adjacent α variants has been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722082700001 Publication Date 2021-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.505 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 1.505  
  Call Number UA @ admin @ c:irua:183616 Serial 6849  
Permanent link to this record
 

 
Author Madsen, J.; Pennycook, T.J.; Susi, T. url  doi
openurl 
  Title ab initio description of bonding for transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 231 Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744190300006 Publication Date 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:183955 Serial 6850  
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N. url  doi
openurl 
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal  
  Volume Issue Pages 09003  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652552200053 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 326 Series Issue Edition  
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179147 Serial 6851  
Permanent link to this record
 

 
Author Velazco Torrejón, A. url  openurl
  Title Alternative scan strategies for high resolution STEM imaging Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 131 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Currently, a large variety of materials are studied by transmission electron microscopy (TEM) as it offers the possibility to perform structural and elemental analysis at a local scale. Relatively recent advances in aberration correctors and electron sources allow the instrument to achieve atomic resolution. Along with these advances, a state-of-the-art technology has been reached in TEM. However, the instrument is far from being perfect and imperfections or external sources can make the interpretation of information troublesome. Environmental factors such as acoustic and mechanical vibrations, temperature fluctuations, etc., can induce sample drift and create image distortions. These distortions are enhanced in scanning operation because of the serial acquisition of the information, which are more apparent at atomic resolution as small field of views are imaged. In addition, scanning distortions are induced due to the finite time response of the scan coils. These types of distortions would reduce precision in atomic-scale strain analysis, for instance, in semiconductors. Most of the efforts to correct these distortions are focused on data processing techniques post-acquisition. Another limitation in TEM is beam damage effects. Beam damage arises because of the energy transferred to the sample in electron-sample interactions. In scanning TEM, at atomic resolution, the increased electron charge density (electron dose) carried on a sub-Å size electron probe may aggravate beam damage effects. Soft materials such as zeolites, organic, biological materials, etc., can be destroyed under irradiation limiting the amount of information that can be acquired. Current efforts to circumvent beam damage are mostly based on low electron dose acquisitions and data processing methods to maximize the signal at low dose conditions. In this thesis, a different approach is given to address drift and scanning distortions, as well as beam damage effects. Novel scan strategies are proposed for that purpose, which are shown to substantially overcome these issues compared to the standard scan method in TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180973 Serial 6852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: