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Abstract
Single-shot structured light profilometry (SLP) aims at reconstructing the 3D height map of an
object from a single deformed fringe pattern and has long been the ultimate goal in fringe
projection profilometry. Recently, deep learning was introduced into SLP setups to replace the
task-specific algorithm of fringe demodulation with a dedicated neural network. Research on deep
learning-based profilometry has made considerable progress in a short amount of time due to the
rapid development of general neural network strategies and to the transferrable nature of deep
learning techniques to a wide array of application fields. The selection of the employed loss
function has received very little to no attention in the recently reported deep learning-based SLP
setups. In this paper, we demonstrate the significant impact of loss function selection on height
map prediction accuracy, we evaluate the performance of a range of commonly used loss functions
and we propose a new mixed gradient loss function that yields a higher 3D surface reconstruction
accuracy than any previously used loss functions.

1. Introduction

Structured light profilometry (SLP) is the technique of reconstructing the 3D surface map of an object by
projecting predefined fringe patterns onto its surface and by observing it under an angle [1, 2]. From the
recorded deformed fringe pattern, the full-field height map of the object can be extracted using various
triangulation techniques that can be subdivided into different classes depending on the specific
demodulation strategy that is employed. Since the recorded intensity map IR of the deformed fringe pattern
is a linear equation of background illumination IB, intensity profile modulation IM and phase map φ(x,y)
(equation (1)), a set of at least three different intensity maps IR is needed per 3D measurement to extract the
phase map φ(x,y) analytically:

IR (x,y) = IB (x,y)+ IM (x,y)cos(φ(x,y)) . (1)

To solve equation (1), phase shifting profilometry (PSP) techniques permute the modulation of IM by
integer multiples of 2π/n (with n⩾ 3) between successive recordings of IR. A larger number of phase shifts n
per 3D measurement improves the measurement resolution, but also increases the measurement of 3D
recordings, limiting the overall 3D recording speed. This results in the typical trade-off between speed and
measurement accuracy.

Even though modern PSP systems have been reported to acquire high-resolution 3D measurements at
real-time speeds [3, 4], several drawbacks to phase-shifting systems remain. For example, the 3D frame rate
of PSP techniques is ultimately limited to 1/nth of the camera frame rate which leads to an inevitable degree
of motion artifacts to be present in the 3D measurements. Furthermore, PSP setups require custom
synchronization between the digital light projector and the camera. Therefore, additional triggering hardware
and onboard (flash) projector memory is needed to display a constant loop of fringe patterns. In contrast,
single-shot profilometry techniques are designed to extract height information from a single deformed fringe
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pattern. Generally speaking, all single-shot strategies are either adapted versions of Takeda’s Fourier
transform profilometry (FTP) [5] or employ additional color channels to superimpose differently modulated
intensity patterns onto a single color map [6, 7]. While both approaches have been highly successful and are
implemented into a variety of application fields, they each have specific drawbacks. For instance, FTP
techniques depend on the correct selection of the originally projected carrier frequency, which is stretched in
Fourier space through modulation of the object’s surface shape. When the carrier frequency band overlaps
with the other frequency components in Fourier space, it cannot be retrieved unambiguously, leading to loss
of information especially near sharp edges. Color-sensitive approaches, on the other hand, assume that the
object surface reflects different colors uniformly and that there is no crosstalk between adjacent color
channels. When this is not the case, the quality of the resulting depth map deteriorates significantly.

Recently, we reported a new technique to obtain object height information directly from only a single
deformed fringe pattern [8]. The proposed technique is based entirely on deep learning and uses a neural
network to extract full-field height information from deformed fringe patterns with high accuracy. In
addition, intermediate data processing steps (such as background masking, noise reduction, and phase
unwrapping) that otherwise must be implemented explicitly in classic demodulation algorithms were
learned directly as part of the network’s mapping function. Since the publication of this proof-of-principle
paper, several implementations of deep learning-based SLP systems have been reported, exploring
adaptations to the network architecture, training dataset and model hyperparameters. None of them,
however, addresses the choice of loss function that is used to train the model. In fact, nearly all models
employ the L2 or mean squared error (MSE)-loss [9–15], one uses smooth L1-loss [16] and some do not
mention the employed loss function in the training of their model at all [17–19]. According to Wang et al
[20], the popularity of the L2-norm in the training of neural networks can be explained by several
arguments: first, it is easy and computationally inexpensive to calculate. Second, it has a clear physical
meaning—it is the natural way to define the energy of the error signal. Third, it is convex, symmetric and
differentiable, making it an excellent metric in the context of optimization problems. Finally, and perhaps
most importantly, it is readily implemented in nearly every existing deep learning framework as the default
loss function. As we will see, the L2-norm also possesses some properties that make it a questionable
candidate to be implemented as loss function of choice in some contexts. For example, several
pre-assumptions are made when the L2-norm is used: signal fidelity is assumed to be independent of spatial
or temporal relationships between samples, independent of the signs of the error signal and all signal samples
are to be equally important to signal fidelity. In any case, the loss function is one of the key components of
any neural network: it is the metric that defines the prediction error and its gradient is used to update the
network weights with each pass over the training dataset. In this work, we demonstrate that the choice of loss
function in a deep learning-based SLP setup has a significant impact on prediction accuracy, we evaluate the
performance of several common loss functions and we propose a custom mixed gradient loss function that
yields a higher prediction accuracy than any of the other investigated loss functions.

2. Methods

2.1. Data set
We use a dataset of simulated height maps with corresponding deformed fringe patterns as data couples to
train the neural network. To automate the process of constructing a large training dataset, a random surface
map generator is designed. Input parameters such as boundary limits, number of peaks, and sharpness or
smoothness of the edges can all be set and are randomly varied within predefined limits to produce a set
number of randomly varying 3D height maps. Reflectivity is assumed to be uniform and no additional noise
is added to the simulated fringe maps. After the creation of a set of randomly fluctuating height maps, a
predefined fringe pattern is projected virtually onto each height map and the resulting surface modulation is
observed under a fixed angle α. Using straightforward triangulation, the modulated fringe pattern is sampled
on a Cartesian grid. The complete process of data-couple generation is illustrated in figure 1.

The simulated dataset used in this work aims to mimic images obtained with real SLP setups.
Consequently, realistic values for fringe pattern frequency (six periods per image width), the angle between
projection and observation axes (α = 30◦), and maximum width to height ratio (4:1) are chosen in the
generation of our dataset. Z-values were confined to z ∈ R3 [0,32]. Note that the maximum z-value of 32
does not necessarily need to be attained for every surface map; it is simply the upper limit. The 4:1 ratio
between image width and maximum surface height reduces the amount of shadows that may arise during the
fringe modulation process. Deformed fringe patterns and height maps are each sampled on a grid of
128× 128 pixels. After fringe modulation, volumetric boundary limits of the surface maps in our dataset are
normalized to x,y,z ∈ R3 [0,1]. For a more detailed description of the training data set generation, we refer
the reader to [8].
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Figure 1. Fringe modulation process. First, a randomly generated height map is generated (a). Next, a predefined sinusoidally
modulated fringe pattern (b) is projected onto it, after which the resulting surface image (c) is observed under an angle α
(here α= 30◦). Finally, the deformed fringe pattern (d) is sampled onto a Cartesian grid and stored.

Figure 2. Network architecture of the modified U-net. Three downsampling and three upsampling blocks are placed
symmetrically between input and output images. Downsampling blocks consist of two convolutional layers followed by a 2× 2
max-pooling layer, upsampling blocks consist of two convolutional layers preceded by a deconvolutional layer. ReLu activation
functions are used after each convolutional layer, except for the final single-channel convolutional layer.

2.2. Network architecture
The neural network employed in this work is a modified version of the U-net proposed by Ronneberger et al
[21]. A schematic representation of its architecture is shown in figure 2. The modified U-net can be divided
symmetrically into a contracting path (encoder) and an expansive path (decoder). The contracting path
consists of a succession of convolutional layers with 5× 5 filters, each followed by a rectified linear unit
(ReLu) activation function. After every two successive convolutional layers, a 2× 2 max-pooling operation is
applied. Together, two convolutional layers and one max-pooling layer form a downsampling block. Each
downsampling block halves the spatial size of the input representation but doubles the number of feature
maps, starting with four feature maps for the first block, eight for the second, and so on. The purpose of the
contracting path is to capture the context of the input image by increasing the receptive field of the feature
maps. By doubling the number of feature maps with each downscaling block, the architecture can detect the
complex structures that are present in the input image more efficiently [22]. The expansive path is
symmetrically identical to the contracting path, except that the max-pooling operations are replaced by a
2× 2 deconvolutional layer that precedes the convolutional layers in each upsampling block. The
deconvolutional (or transposed convolutional) layers upsample the input feature map by a factor of 2. With
each deconvolutional operation, the number of feature maps is halved until finally a single convolutional
layer with a 1× 1 filter is applied to the output of the last upsampling block. By using a symmetric network
architecture, the modified U-net produces an output image of identical size as the input image.
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Note that each upsampling block has access to the output feature map of its corresponding
downsampling counterpart through concatenated skip connections between them. This allows the expansive
path to reuse the previously learned local features, allowing information to be retained directly from
previous layers of the network. In total, our model contains 78 997 free parameters.

2.3. Loss functions
2.3.1. L1 and L2
Single-shot deep learning-based profilometry aims to learn a mapping function Ŷ= f(X) that transforms a
2D modulated fringe map (X) to a continuous 3D height distribution (Ŷ) without any additional
intermediary processing steps. The loss function is the metric that defines how close the predicted height
map Ŷ is to the ground truth Y. Common metrics that are used as loss function in the training of neural
networks are L1 or mean absolute error (MAE) and L2 or MSE:

L1 (y, ŷ) =
1

n

n∑
i=1

|ŷi − yi| (2)

L2 (y, ŷ) =
1

n

n∑
i=1

(ŷi − yi)
2 (3)

with n the number of data points. From their definitions, some properties of L1- and L2-norms can be
deducted when they are used as loss function in deep learning models. First, it can be seen that L2 is more
sensitive to outliers in the dataset compared to L1 since the differences between prediction and ground truth
are squared. As a result, L2 will adjust the model to minimize the error caused by these single outlier cases at
the expense of many other data points if they contribute only little to the general error. On the other hand,
L1-norms produce less stable solutions, meaning that for a small horizontal adjustment of a single data point
the slope of the regression line between data samples may jump a large amount. Selection between L1 and
L2-norms as loss function of choice in a deep learning model is made primarily based on this trade-off
between robustness and stability and which of these properties is more desirable for the given minimization
problem.

2.3.2. SSIM and MS-SSIM
The structural similarity index (SSIM) is a metric that is frequently used as loss function in single-image
super-resolution models [23] and other tasks that involve human perceptual judgment. The SSIM and its
multi-scale variant MS-SSIM are loss functions that, unlike L1 and L2, are based on the human visual system
as they aim to match the luminance I, contrast C, and structural information S between images. The SSIM is
defined as:

SSIM(y, ŷ) = I(y, ŷ)αC(y, ŷ)βS(y, ŷ)γ (4)

with

I(y, ŷ) =
2µyµŷ +C1

µy
2 +µŷ

2 +C1

C(y, ŷ) =
2σyσŷ +C2

σy
2 +σŷ

2 +C2

S(y, ŷ) =
σŷy +C3

σyσŷ +C3
.

The variables µy, µŷ, σy and σŷ denote mean pixel intensity and standard deviations of pixel intensity in a
local image patch at either y or ŷ, respectively. In the following, we choose a square region of 3 pixels on
either side of y or ŷ, which results in patches of 7× 7 pixels. The variable σŷy denotes the sample correlation
coefficient between corresponding pixels in the patches centered at y and ŷ. The constants C1,C2 and C3 are
small constant values that are added for numerical stability and α, β and γ define the weights given to each
component of the SSIM.

The SSIM metric assumes a fixed image sampling density and is a single-scale index. An extension to this
metric is the multi-scale variant MS-SSIM, which can operate at multiple scales simultaneously. The ground
truth image y and its candidate approximation image ŷ are both iteratively downsampled by a factor of 2. The
contrast C and structural S components are applied at all scales. The luminance component I, however, is
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only applied at the coarsest scale, denotedM. Again, the weighting of the different components is allowed at
each scale, leading to the following definition of the MS-SSIM:

MS-SSIM(y, ŷ) = IM(y, ŷ)
α

M∏
j=1

Cj(y, ŷ)
βjSj(y, ŷ)

γj . (5)

Note that both SSIM and MS-SSIM are normalized to [0,1] where 1 indicates a full correspondence
between y and ŷ. Since the loss function employed in a neural network is to be minimized, we use 1–SSIM
and 1–MS-SSIM instead.

2.3.3. Mean gradient error (MGE) and mixed gradient error (MixGE)
In SLP, we are mainly concerned about relative phase differences. Two surface shapes can be assumed to be
identical if their pixel-wise phase difference is a constant value: subtracting the minimum, mean or
maximum value of the surface map from each pixel value suffices to unwrap the phase map of dynamically
moving surface shapes temporally. It, therefore, makes sense to incorporate the local gradient of the
prediction (Ŷ) and the ground truth (Y) surface maps directly into the loss function. Inspired by [24], we
introduce classic gradients to the loss function using Sobel operators:

Gx = Y ∗

 −1 0 1
−2 0 2
−1 0 1



Gy = Y ∗

 −1 −2 −1
0 0 0
1 2 1


where ∗ denotes the convolution operator. Together, the gradients Gx and Gy are combined into the general

pixel-wise gradient map G=
√

Gx
2 +Gy

2. Likewise, the gradient map Ĝ of the predicted surface map Ŷ can

be calculated. The MGE can then be defined as:

MGE=
1

n

1

m

n∑
i=1

m∑
j=1

(
G(i, j)− Ĝ(i, j)

)2
.

Using the MGE directly as a stand-alone loss function of the neural network would result in divergence of the
model since the DC component is completely removed from the solution. The MGE can, however, be used as
an auxiliary component by adding it to the standard L1-norm in the creation of a MixGE:

MixGE= (1−λ)L1 +λMGE (6)

where λ ∈ [0,1] is the gradient error weight factor that needs to be optimized in function of the employed
model architecture and dataset.

2.4. Training the network
To train our network, a dataset of N total = 12 500 simulated data couples is created using the automated
surface generator. The number of local surface maxima and minima that are present in the simulated height
maps varies randomly between 0 (flat planes of random height) and 15 (highly fluctuating landscapes).
Either linear or spline interpolation is used randomly to sample the simulated surfaces on a 128× 128 grid
between the minima and maxima, resulting in a mix of surface maps containing both sharp and smooth
edges, respectively. A training dataset of N train = 10 000 simulated input-output pairs is used to train the
network and a validation dataset of Nval = 2500 simulated input-output pairs is used to test the performance
of the model on previously unseen data.

The Tensorflow framework [25] is used to train the modified U-net. The batch size is set at 4 and roughly
100 full passes (or epochs) through the training dataset are completed, depending on the individual
convergence of the network trained with each employed loss function. We use Adam optimization with an
initial learning rate of 10−4. Before training, the initial values of the filter weights are set using Xavier
initialization to ensure equal variance between successive layers. To regularize training and to reduce
overfitting, L2 weight decay is used with an initial setting of 10−3. After every 50 000 iterations, the learning
rate is divided by 5, and L2 penalties are divided by 10. During the final set of iterations, L2 penalties are set
to 0. The number of training iterations was chosen so that for each loss function investigated in this paper
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Figure 3. Optimization of the gradient weight λ shows an optimal region between λ= 0.4 and λ= 0.6 for which the error per
pixel of the model trained with the mixed gradient error reaches the minimum for various metrics.

(L1, L2, SSIM, MS-SSIM, and MixGE), the validation error reached convergence. Convergence is defined here
at the point where the validation error does not improve for five consecutive epochs. In addition, validation
curves are monitored to confirm the general converging behavior of the network and to ensure that no faulty
divergence is occurring. Our implementation uses cuDNN and is optimized for parallel execution. The
training time of a single model varies depending on the employed loss function. In total, the training time for
a single model ranges between 34 min (MAE), 35 min (MSE), 36 min (MixGE), 42 min (SSIM), and 62 min
(MS-SSIM) when deployed on a Titan X Pascal GPU. These convergence times correspond to a total number
of training epochs of 98, 102, 92, 106, and 119 for networks trained using L1, L2, MixGE, SSIM, and
MS-SSIM, respectively.

3. Results

3.1. Optimization of gradient weight λ
First, the modified U-net model was trained using various ratios of MGE/L1 to find the optimal contribution
of the MGE component to the total MixGE. Several values of λ ranging from 0 to 0.99 were used in
equation (6) to modify the impact of the MGE component. Each resulting MixGE loss function was used to
train the model to convergence on a fixed dataset. Upon convergence, the model performance was evaluated
on the validation data set using the L1,L2, SSIM, and MS-SSIM metrics. The result is shown in figure 3. The
models trained with the MixGE outperform those trained with standard L1 loss up to a value of λ≈ 0.95.
Beyond this point, the MGE component becomes too dominant over the DC component provided by L1,
resulting in divergence of the model and a steep increase in prediction error. Although the various metrics
provide different evaluations of the models trained using the differently weighted MixGE loss functions, they
all reach a minimum error per pixel when λ is chosen between λ= 0.40 and λ= 0.60. In the following, we
will use a gradient weight of λ= 0.50 in the MixGE loss function.

3.2. Performance of various loss functions
The modified U-net was trained to convergence using each of the L1, L2, SSIM, MS-SSIM, and MixGE loss
functions. The performance of each trained model was evaluated by comparing the height map predictions
(Ŷ) of the samples in the validation set to their respective ground truth (Y) height maps using each of the
corresponding metrics of L1, L2, SSIM, MS-SSIM, and MixGE. The resulting error values were averaged over
the entire validation set and are included in table 1.

The top part of table 1 (General) represents the performance matrix over the entire validation dataset,
containing 2500 simulated height map samples with a randommix of both smooth (spline-interpolated) and
sharp (linearly interpolated) edges. The MixGE loss function outperforms the other loss functions on this
general population of height maps by a significant margin, even when the evaluation metric is the same as
the one that was used as loss function in the training of the model. Only when the MS-SSIM metric is used,
the model trained with the MixGE loss function is scored second best after the MS-SSIM loss function itself.
Top performing metric is underlined.
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Table 1. Evaluation of the modified U-net trained using different loss functions. Top: the general average of the model performance on
the entire validation dataset. Middle: model performance on a validation subset composed of entirely spline-interpolated surface maps.
Bottom: model performance on a validation subset composed of entirely linearly interpolated surface maps.

Loss function
Metric L1 L2 SSIM MS-SSIM MixGE

General
L1 (×10−3) 10.01 10.52 13.40 11.21 7.27
L2 (×10−4) 2.45 1.62 1.81 1.74 1.49
SSIM (×10−2) 1.83 1.85 1.25 1.27 1.13
MS-SSIM (×10−3) 10.03 8.52 6.84 6.49 6.59
MixGE (×10−3) 2.41 2.56 2.45 2.28 2.09
Spline
L1 (×10−3) 10.04 10.21 12.93 11.44 7.35
L2 (×10−4) 2.50 1.56 1.77 1.76 1.46
SSIM (×10−2) 1.81 1.72 1.24 1.26 1.17
MS-SSIM (×10−3) 10.44 8.14 6.87 6.29 6.65
MixGE (×10−3) 2.40 2.46 2.40 2.31 2.11
Linear
L1 (×10−3) 10.01 11.46 13.52 11.11 7.15
L2 (×10−4) 2.41 1.69 1.78 1.73 1.57
SSIM (×10−2) 1.87 2.02 1.25 1.27 1.08
MS-SSIM (×10−3) 9.89 8.98 6.89 6.60 6.52
MixGE (×10−3) 2.48 2.88 2.46 2.23 2.08

Figure 4. Sample from the validation set composed of spline-interpolated height maps. X- and Y-coordinates are displayed as
pixel numbers on a 128× 128 grid; Z-values are normalized to [0, 1].

To further investigate the effect of surface shape variation on loss function performance, two additional
validation datasets of each N = 1000 data couples were created using the random surface map generator: one
in which only spline interpolation was used to connect the peaks and troughs present in the height map, and
one in which only linear interpolation was used. From the middle and bottom parts of table 1, a large
discrepancy can be observed between L2-performance on samples with smooth edges (Spline) and those with
sharp edges (Linear). For all metrics, L2 performs significantly worse on surfaces with sharp edges than it
does on surfaces with smooth edges. This behavior is reflected in the samples illustrated in figures 5 and 6.
Whereas models trained with L1, SSIM, MS-SSIM, and MixGE loss functions perform similarly on
spline-interpolated height maps (figure 4) as on linearly interpolated height maps (figure 5), the model
trained with L2-loss produces a larger error when applied to predict height maps with sharp edges than when
applied to predict height maps with smooth, curved edges.

To highlight the superior performance of MixGE over the other loss functions, we include the
measurement of the surface shape of a mannequin doll head in figure 6. The ground truth 3D surface
measurement was obtained using four-step phase-shifting profilometry. Parts of the surface map where
shadows, saturated reflections or any other regions of invalid data corrupted the 3D measurement were
interpolated in post-processing. It can be seen that the model trained with MixGE does a significantly better
job of predicting the mannequin doll surface shape than the models trained with the other loss functions. It
should be noted that a clear linear error is present across all prediction maps, including the one
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Figure 5. Sample from the validation set composed of linearly interpolated height maps. L2-loss struggles to resolve the sharp
edges present in the height map and produces a higher error. X- and Y-coordinates are displayed as pixel numbers on a 128× 128
grid; Z-values are normalized to [0, 1].

Figure 6.Mannequin doll head sample obtained with standard 4-step phase-shifting profilometry demonstrates superior
prediction performance of the model trained with MixGE loss function. X- and Y-coordinates are displayed as pixel numbers on a
128× 128 grid; Z-values are normalized to [0, 1].

Table 2. Evaluation of the modified U-net trained using different loss functions when Poisson noise is added to the deformed fringe
patterns.

Loss function
Metric L1 L2 SSIM MS-SSIM MixGE

Poisson noise
L1 (×10−3) 10.66 10.92 18.23 19.48 9.13
L2 (×10−4) 3.08 1.92 4.72 4.26 1.78
SSIM (×10−2) 2.14 2.15 1.41 1.55 1.33
MS-SSIM (×10−3) 10.98 9.01 7.90 7.14 7.07
MixGE (×10−3) 2.74 2.93 2.93 5.77 2.28

reconstructed with the MixGE loss. This may be due to the strong localized height variations near and above
the eye region of the mannequin head model. In the training dataset, no samples with such relatively large
jumps in Z-value have been included and none of the loss functions seem to handle these properly.

Finally, to assess how the different loss functions are influenced by the presence of noise in the fringe
patterns, an additional validation set of N = 1000 data couples was generated in which each input fringe map
contained Poisson noise with the pixel value as the mean (before normalization). The corresponding error
matrix is included in table 2 and a random sample from the validation set is shown in figure 7. First of all, it
can be seen that the models trained with the L1, L2 and MixGE loss functions are able to extract the general
form of the 3D map sufficiently well. As the neural network was trained to produce smooth, noise-free
surface maps only, the predicted height maps are largely noise-free even when the input maps themselves are
not. This way, noise filtering is implicitly learned by the network. The models trained with the SSIM-based
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Figure 7. Sample from the validation set composed of input fringe maps that were corrupted with Poisson noise. The models
trained with L1,L2-and MixGE-loss functions are relatively unaffected by the added noise, but the models trained with
SSIM-based loss functions experience larger structural errors. X- and Y-coordinates are displayed as pixel numbers on a
128× 128 grid; Z-values are normalized to [0, 1].

losses, however, are more affected by the increased noise level. It should be noted that we assess ‘pure’ SSIM
loss-prediction accuracy here: a mixed loss function containing an additional contribution of L1- or L2-loss
might alleviate this oversensitivity to the added shot noise of the SSIM-family of loss functions. It can be seen
from table 2 that MixGE outperforms all other loss functions by a significant margin.

4. Conclusion

We demonstrated that careful selection of the loss function can considerably improve the prediction accuracy
of a neural network that is trained to reconstruct height maps from single deformed fringe patterns. Our
results show clearly that the performance of the commonly used L2-loss is highly dependent on the nature of
the surface shape: it performs significantly better when applied to height maps with curved, smooth surface
variations than it does on surfaces with sharp edges. We introduced the MixGE loss function, which takes
into account the local gradient variations of the height maps, and showed that it outperforms any previously
used loss functions in deep learning profilometry.
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