toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, J.; Li, Y.; Karaaslan, Y.; Sevik, C.; Chen, Y. doi  openurl
  Title Misfit dislocation structure and thermal boundary conductance of GaN/AlN interfaces Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue (up) 3 Pages 035301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structure and thermal boundary conductance of the wurtzite GaN/AlN (0001) interface are investigated using molecular dynamics simulation. Simulation results with three different empirical interatomic potentials have produced similar misfit dislocation networks and dislocation core structures. Specifically, the misfit dislocation network at the GaN/AlN interface is found to consist of pure edge dislocations with a Burgers vector of 1/3(1 (2) over bar 10) and the misfit dislocation core has an eight-atom ring structure. Although different interatomic potentials lead to different dislocation properties and thermal conductance values, all have demonstrated a significant effect of misfit dislocations on the thermal boundary conductance of the GaN/AlN (0001) interface. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694725800001 Publication Date 2021-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181623 Serial 8254  
Permanent link to this record
 

 
Author Mobaraki, A.; Sevik, C.; Yapicioglu, H.; Cakir, D.; Gulseren, O. doi  openurl
  Title Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue (up) 3 Pages 035402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Predicting the mechanical and thermal properties of quasi-two-dimensional (2D) transition metal dichalco-genides (TMDs) is an essential task necessary for their implementation in device applications. Although rigorous density-functional-theory-based calculations are able to predict mechanical and electronic properties, mostly they are limited to zero temperature. Classical molecular dynamics facilitates the investigation of temperature-dependent properties, but its performance highly depends on the potential used for defining interactions between the atoms. In this study, we calculated temperature-dependent phonon properties of single-layer TMDs, namely, MoS2, MoSe2, WS2, and WSe2, by utilizing Stillinger-Weber-type potentials with optimized sets of parameters with respect to the first-principles results. The phonon lifetimes and contribution of each phonon mode in thermal conductivities in these monolayer crystals are systematically investigated by means of the spectralenergy-density method based on molecular dynamics simulations. The obtained results from this approach are in good agreement with previously available results from the Green-Kubo method. Moreover, detailed analysis of lattice thermal conductivity, including temperature-dependent mode decomposition through the entire Brillouin zone, shed more light on the thermal properties of these 2D crystals. The LA and TA acoustic branches contribute most to the lattice thermal conductivity, while ZA mode contribution is less because of the quadratic dispersion around the Brillouin zone center, particularly in MoSe2 due to the phonon anharmonicity, evident from the redshift, especially in optical modes, by increasing temperature. For all the considered 2D crystals, the phonon lifetime values are compelled by transition metal atoms, whereas the group velocity spectrum is dictated by chalcogen atoms. Overall, the lattice thermal conductivity is linearly proportional with inverse temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473536400003 Publication Date 2019-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193764 Serial 8645  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C. pdf  doi
openurl 
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue (up) 3 Pages 035003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425250600002 Publication Date 2016-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 61 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164938 Serial 8760  
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal  
  Volume 123 Issue (up) 3 Pages 033102-33106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033604700003 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number UA @ admin @ c:irua:198382 Serial 8823  
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X. url  doi
openurl 
  Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
  Year 2023 Publication Applied physics reviews Abbreviated Journal  
  Volume 10 Issue (up) 3 Pages 031406-31409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001038283300001 Publication Date 2023-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15; 2023 IF: 13.667  
  Call Number UA @ admin @ c:irua:198433 Serial 8847  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue (up) 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Ground state and normal-mode spectra of a two-dimensional system of dipole particles confined in a parabolic trap Type A1 Journal article
  Year 2008 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 78 Issue (up) 3 Part 1 Pages 031405-31412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ordered configurations of a monolayer of interacting magnetic dipoles confined in a circular parabolic potential are investigated as a function of the dipole moment of the particles. Despite the circular confinement, we find very asymmetric ordered structures like chains and Y-shaped configurations when a magnetic field is applied parallel to the plane of the particles. The normal-mode spectrum of the particles and its dependence on the magnetic field and the strength of the dipole moment of the particles are studied. The vibrational and rotational modes of the spectrum, which are associated with the stability of the system, are investigated in detail. The number of particles is varied and we found different ordering of the particles for different values of the dipole moment and the magnetic field. A ring structure with a large number of particles is observed for high values of the dipole moment of the particles.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000259682700057 Publication Date 2008-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.366; 2008 IF: 2.508  
  Call Number UA @ lucian @ c:irua:103084 Serial 1382  
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M. pdf  doi
openurl 
  Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
  Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 173 Issue (up) 3-4 Pages 207-226  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000324820300008 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 1 Open Access  
  Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036  
  Call Number UA @ lucian @ c:irua:111140 Serial 1845  
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Resonant tunneling in graphene microstructures Type A1 Journal article
  Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 39 Issue (up) 3-4 Pages 534-536  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000255600600055 Publication Date 2007-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.163; 2008 IF: 0.859  
  Call Number UA @ lucian @ c:irua:68850 Serial 2892  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. doi  openurl
  Title Stable and metastable states in a mesoscopic superconducting “eight” loop in presence of an external magnetic field Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 400 Issue (up) 3-4 Pages 165-170  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The stable and metastable states of different configurations of a mesoscopic loop in the form of an eight is studied in the presence of a magnetic field. We find that for certain configurations the current is equal to zero for any value of the magnetic field leading to a magnetic field independent superconducting state. The state with fixed phase circulation becomes unstable when the momentum of the superconducting electrons reaches a critical value. At this moment the kinetic energy of the superconducting condensate becomes of the same order as the potential energy of the Cooper pairs and it leads to an instability. Numerical analysis of the time-dependent Ginzburg-Landau equations shows that the absolute value of the order parameter changes gradually at the transition from a state with one phase circulation to another although the vorticity change occurs abruptly. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000187726300010 Publication Date 2003-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:103757 Serial 3142  
Permanent link to this record
 

 
Author Sreckovic, M.Z.; Tomic, E.; Ostojic, S.M.; Ilic, J.T.; Bundaleski, N.; Sekulic, R.S.; Mlinar, V. openurl 
  Title The application of laser beam diffraction and scattering methods in the measurement of shape and determination of material parameters Type A1 Journal article
  Year 2007 Publication Lasers in Engineering (Old City Publishing) Abbreviated Journal Laser Eng  
  Volume 17 Issue (up) 3-4 Pages 179-196  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Lasers can be used for many applications including determination of size, in addition to the theory of diffraction and material dispersion phenomena. In this paper we calculated the corrections in angular intensity for the Gaussian and uniform particle distributions, the scattering intensity on cylindrical objects. We also evaluated the necessary mathematical summations. In addition, we analyse and Simulate the special positions of detectors using laser Doppler anemometric (LDA) methods, which can be used to determine the particle diameter. The dispersion measurements for actual fibres are given at the end. The geometric and material parameters of these fibres were taken before the evaluation of the angular scattering intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0898-1507 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.214 Times cited Open Access  
  Notes Approved Most recent IF: 0.214; 2007 IF: 0.188  
  Call Number UA @ lucian @ c:irua:104050 Serial 3571  
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M. doi  openurl
  Title Tuning of the optical properties of (11k) grown InAs quantum dots by the capping layer Type A1 Journal article
  Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 39 Issue (up) 3-4 Pages 359-361  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000255600600013 Publication Date 2007-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.163 Times cited Open Access  
  Notes Approved Most recent IF: 1.163; 2008 IF: 0.859  
  Call Number UA @ lucian @ c:irua:68849 Serial 3753  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. doi  openurl
  Title Modeling drive currents and leakage currents : a dynamic approach Type A1 Journal article
  Year 2009 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 8 Issue (up) 3/4 Pages 307-323  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The dynamics of electrons and holes propagating through the nano-scaled channels of modern semiconductor devices can be seen as a widespread manifestation of non-equilibrium statistical physics and its ruling principles. In this respect both the devices that are pushing conventional CMOS technology towards the final frontiers of Moores law and the upcoming set of alternative, novel nanostructures grounded on entirely new concepts and working principles, provide an almost unlimited playground for assessing physical models and numerical techniques emerging from classical and quantum mechanical non-equilibrium theory. In this paper we revisit the Boltzmann as well as the WignerBoltzmann equation which offers a valuable platform to study transport of charge carriers taking part in drive currents. We focus on a numerical procedure that regained attention recently as an alternative tool to solve the time-dependent Boltzmann equation for inhomogeneous systems, such as the channel regions of field-effect transistors, and we discuss its extension to the WignerBoltzmann equation. Furthermore, we pay attention to the calculation of tunneling leakage currents. The latter typically occurs in nano-scaled transistors when part of the carrier distribution sustaining the drive current is found to tunnel into the gate due the presence of an ultra-thin insulating barrier separating the gate from the channel region. In particular, we discuss the paradox related to the very existence of leakage currents established by electrons occupying quasi-bound states, while the (real) wave functions of the latter cannot carry net currents. Finally, we describe a simple model to resolve the paradox as well as to estimate gate currents provided the local carrier generation rates largely exceed the tunneling rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208236100009 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.526; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:89503 Serial 2110  
Permanent link to this record
 

 
Author Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M. doi  openurl
  Title The vortex-magnetic dipole interaction in the London approximation Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue (up) 3/4 Pages 321-331  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900014 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44987 Serial 3868  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue (up) 3/4 Pages 311-320  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900013 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44988 Serial 3875  
Permanent link to this record
 

 
Author Nazar, N.D.; Vazifehshenas, T.; Ebrahimi, M.R.; Peeters, F.M. doi  openurl
  Title Strong anisotropic optical properties of 8-Pmmn borophene : a many-body perturbation study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue (up) 30 Pages 16417-16422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles many-body perturbation theory, we investigate the optical properties of 8-Pmmn borophene at two levels of approximations; the GW method considering only the electron-electron interaction and the GW in combination with the Bethe-Salpeter equation including electron-hole coupling. The band structure exhibits anisotropic Dirac cones with semimetallic character. The optical absorption spectra are obtained for different light polarizations and we predict strong optical absorbance anisotropy. The absorption peaks undergo a global redshift when the electron-hole interaction is taken into account due to the formation of bound excitons which have an anisotropic excitonic wave function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000677722700001 Publication Date 2021-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.123 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:180385 Serial 7022  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue (up) 30 Pages 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Wang, S.; Tian, H.; Sun, M. pdf  doi
openurl 
  Title Valley-polarized and enhanced transmission in graphene with a smooth strain profile Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue (up) 30 Pages 304002-304013  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the influence of strain on the valley-polarized transmission of graphene by employing the wave-function matching and the non-equilibrium Green's function technique. When the transmission is along the armchair direction, we show that the valley polarization and transmission can be improved by increasing the width of the strained region and increasing (decreasing) the extensional strain in the armchair (zigzag) direction. It is noted that the shear strain does not affect transmission and valley polarization. Furthermore, when we consider the smooth strain barrier, the valley-polarized transmission can be enhanced by increasing the smoothness of the strain barrier. We hope that our finding can shed new light on constructing graphene-based valleytronic and quantum computing devices by solely employing strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977124700001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:196718 Serial 8953  
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue (up) 31 Pages 16771-16779  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000340075700048 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 58 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118742 Serial 752  
Permanent link to this record
 

 
Author Amini, M.N.; Leenaerts, O.; Partoens, B.; Lamoen, D. pdf  doi
openurl 
  Title Graphane- and fluorographene-based quantum dots Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue (up) 31 Pages 16242-16247  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract With the help of first-principles calculations, we investigate graphane/fluorographene heterostructures with special attention for graphane and fluorographene-based quantum dots. Graphane and fluorographene have large electronic band gaps, and we show that their band structures exhibit a strong type-II alignment. In this way, it is possible to obtain confined electron states in fluorographene nanostructures by embedding them in a graphane crystal. Bound hole states can be created in graphane domains embedded in a fluorographene environment. For circular graphane/fluorographene quantum dots, localized states can be observed in the band gap if the size of the radii is larger than approximately 4 to 5 Å.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000323082300046 Publication Date 2013-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 14 Open Access  
  Notes FWO; GOW; Hercules Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:109457 Serial 1367  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene in inhomogeneous magnetic fields : bound, quasi-bound and scattering states Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue (up) 31 Pages 315301,1-315301,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000293008900002 Publication Date 2011-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 38 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, the Canadian NSERC grant no. OGP0121756 and the Belgian Science Policy (IAP). We acknowledge discussions and correspondence with Professor A Matulis. ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:91176 Serial 1372  
Permanent link to this record
 

 
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
  Year 2015 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 31 Issue (up) 31 Pages 917-924  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000348689700005 Publication Date 2014-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457  
  Call Number c:irua:125292 Serial 3243  
Permanent link to this record
 

 
Author Abedi, S.; Sisakht, E.T.; Hashemifar, S.J.; Cherati, N.G.; Sarsari, I.A.; Peeters, F.M. doi  openurl
  Title Prediction of novel two-dimensional Dirac nodal line semimetals in Al₂B₂ and AlB₄ monolayers Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue (up) 31 Pages 11270-11283  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831003900001 Publication Date 2022-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:189505 Serial 7196  
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B. pdf  doi
openurl 
  Title Charge transport in magnetic topological ultra-thin films : the effect of structural inversion asymmetry Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue (up) 32 Pages 325702  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of structural inversion asymmetry, induced by the presence of substrates or by external electric fields, on charge transport in magnetic topological ultra-thin films. We consider general orientations of the magnetic impurities. Our results are based on the Boltzmann formalism along with a modified relaxation time scheme. We show that the structural inversion asymmetry enhances the charge transport anisotropy induced by the magnetic impurities and when only one conduction subband contributes to the charge transport a dissipationless charge current is accessible. We demonstrate how a substrate or gate voltage can control the effect of the magnetic impurities on the charge transport, and how this depends on the orientation of the magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000666698000001 Publication Date 2021-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:179647 Serial 6974  
Permanent link to this record
 

 
Author Bekaert, J.; Bringmans, L.; Milošević, M.V. pdf  url
doi  openurl
  Title Ginzburg-Landau surface energy of multiband superconductors : derivation and application to selected systems Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue (up) 32 Pages 325602-325610  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We determine the energy of an interface between a multiband superconducting and a normal half-space, in presence of an applied magnetic field, based on a multiband Ginzburg-Landau (GL) approach. We obtain that the multiband surface energy is fully determined by the critical temperature, electronic densities of states, and superconducting gap functions associated with the different band condensates. This furthermore yields an expression for the thermodynamic critical magnetic field, in presence of an arbitrary number of contributing bands. Subsequently, we investigate the sign of the surface energy as a function of material parameters, through numerical solution of the GL equations. Here, we consider two distinct cases: (i) standard multiband superconductors with attractive interactions, and (ii) a three-band superconductor with a chiral ground state with phase frustration, arising from repulsive interband interactions. Furthermore, we apply this approach to several prime examples of multiband superconductors, such as metallic hydrogen and MgB2, based on microscopic parameters obtained from first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986281900001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:196664 Serial 8875  
Permanent link to this record
 

 
Author Mazzola, F.; Hassani, H.; Amoroso, D.; Chaluvadi, S.K.; Fujii, J.; Polewczyk, V.; Rajak, P.; Koegler, M.; Ciancio, R.; Partoens, B.; Rossi, G.; Vobornik, I.; Ghosez, P.; Orgiani, P. url  doi
openurl 
  Title Unveiling the electronic structure of pseudotetragonal WO₃ thin films Type A1 Journal article
  Year 2023 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 14 Issue (up) 32 Pages 7208-7214  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract WO3 isa 5d compound that undergoes severalstructuraltransitions in its bulk form. Its versatility is well-documented,with a wide range of applications, such as flexopiezoelectricity,electrochromism, gating-induced phase transitions, and its abilityto improve the performance of Li-based batteries. The synthesis ofWO(3) thin films holds promise in stabilizing electronicphases for practical applications. However, despite its potential,the electronic structure of this material remains experimentally unexplored.Furthermore, its thermal instability limits its use in certain technologicaldevices. Here, we employ tensile strain to stabilize WO3 thin films, which we call the pseudotetragonal phase, and investigateits electronic structure using a combination of photoelectron spectroscopyand density functional theory calculations. This study reveals theFermiology of the system, notably identifying significant energy splittingsbetween different orbital manifolds arising from atomic distortions.These splittings, along with the system's thermal stability,offer a potential avenue for controlling inter- and intraband scatteringfor electronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001044522400001 Publication Date 2023-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7; 2023 IF: 9.353  
  Call Number UA @ admin @ c:irua:198391 Serial 8951  
Permanent link to this record
 

 
Author Stosic, D.; Stosic, D.; Ludermir, T.; Stosic, B.; Milošević, M.V. pdf  doi
openurl 
  Title GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism Type A1 Journal article
  Year 2016 Publication Journal of computational physics Abbreviated Journal J Comput Phys  
  Volume 322 Issue (up) 322 Pages 183-198  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100x compared to best available CPU implementations of the theory on a 2563grid. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000381585100010 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.744 Times cited 4 Open Access  
  Notes ; This work was supported through research grants from Brazilian agencies CNPq (306719/2012-6, 140840/2016-8) and FACEPE (IBPG-0510-1.03/15), BOF-UA, and the Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 2.744  
  Call Number UA @ lucian @ c:irua:137115 Serial 4354  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J. pdf  doi
openurl 
  Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue (up) 33 Pages 17724-17733  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000341064800041 Publication Date 2014-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 23 Open Access  
  Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118263 Serial 1469  
Permanent link to this record
 

 
Author Varley, J.B.; Peelaers, H.; Janotti, A.; van de Walle, C.G. pdf  doi
openurl 
  Title Hydrogenated cation vacancies in semiconducting oxides Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue (up) 33 Pages 334212,1-334212,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we have studied the electronic and structural properties of cation vacancies and their complexes with hydrogen impurities in SnO2, In2O3 and β-Ga2O3. We find that cation vacancies have high formation energies in SnO2 and In2O3 even in the most favorable conditions. Their formation energies are significantly lower in β-Ga2O3. Cation vacancies, which are compensating acceptors, strongly interact with H impurities resulting in complexes with low formation energies and large binding energies, stable up to temperatures over 730 °C. Our results indicate that hydrogen has beneficial effects on the conductivity of transparent conducting oxides: it increases the carrier concentration by acting as a donor in the form of isolated interstitials, and by passivating compensating acceptors such as cation vacancies; in addition, it potentially enhances carrier mobility by reducing the charge of negatively charged scattering centers. We have also computed vibrational frequencies associated with the isolated and complexed hydrogen, to aid in the microscopic identification of centers observed by vibrational spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000294060600014 Publication Date 2011-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 125 Open Access  
  Notes ; We gratefully acknowledge useful discussions with M D Mc-Cluskey, O Bierwagen and J Speck. The work was supported by the NSF MRSEC Program (DMR05-20415), the Flemish Science Foundation (FWO-VI), the Belgian American Educational Foundation, and by Saint-Gobain Research, and made use of computing facilities at CNSI (NSF grant No. CHE-0321368), TeraGrid and TACC (NSF grant No. DMR070072N), and NERSC (DOE Office of Science Contract No. DE-AC02-05CH11231). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:92415 Serial 1534  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal  
  Volume 11 Issue (up) 33 Pages 11185-11194  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041124900001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256  
  Call Number UA @ admin @ c:irua:198296 Serial 8821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: