toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal  
  Volume Issue (up) Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M. pdf  doi
openurl 
  Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 168 Issue (up) Pages 220-229  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565900900008 Publication Date 2020-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 21 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:171914 Serial 6500  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Peeters, F.M. pdf  doi
openurl 
  Title The electronic, optical, and thermoelectric properties of monolayer PbTe and the tunability of the electronic structure by external fields and defects Type A1 Journal article
  Year 2020 Publication Physica Status Solidi B-Basic Solid State Physics Abbreviated Journal Phys Status Solidi B  
  Volume Issue (up) Pages 2000182-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First‐principles calculations, within the framework of density functional theory, are used to investigate the structural, electronic, optical, and thermoelectric properties of monolayer PbTe. The effect of layer thickness, electric field, strain, and vacancy defects on the electronic and magnetic properties is systematically studied. The results show that the bandgap decreases as the layer thickness increases from monolayer to bulk. With application of an electric field on bilayer PbTe, the bandgap decreases from 70 meV (0.2 V Å⁻¹) to 50 meV (1 V Å⁻¹) when including spin–orbit coupling (SOC). Application of uniaxial strain induces a direct‐to‐indirect bandgap transition for strain greater than +6%. In addition, the bandgap decreases under compressive biaxial strain (with SOC). The effect of vacancy defects on the electronic properties of PbTe is also investigated. Such vacancy defects turn PbTe into a ferromagnetic metal (single vacancy Pb) with a magnetic moment of 1.3 μB, and into an indirect semiconductor with bandgap of 1.2 eV (single Te vacancy) and 1.5 eV (double Pb + Te vacancy). In addition, with change of the Te vacancy concentration, a bandgap of 0.38 eV (5.55%), 0.43 eV (8.33%), and 0.46 eV (11.11%) is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527679200001 Publication Date 2020-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited 37 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS TMD and the Flemish Science Foundation (FWO-Vl). The authors are thankful for comments by Mohan Verma from the Computational Nanoionics Research Lab, Department of Applied Physics, Bhilai, India and to Francesco Buonocore from ENEA, Casaccia Research Centre, Rome, Italy. ; Approved Most recent IF: 1.6; 2020 IF: 1.674  
  Call Number UA @ admin @ c:irua:168730 Serial 6502  
Permanent link to this record
 

 
Author Bafekry, A. doi  openurl
  Title Graphene-like BC₆N single-layer: tunable electronic and magnetic properties via thickness, gating, topological defects, and adatom/molecule Type A1 Journal article
  Year 2020 Publication Physica E-Low-Dimensional Systems & Nanostructures Abbreviated Journal Physica E  
  Volume 118 Issue (up) Pages 113850-15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory-based first-principles calculations, we investigate the structural, electronic, optical, and transport properties of pristine single-layer BC6N. Under different external actions and functionalization. Increasing the thickness of the structure results in a decrease of the band gap. Applying a perpendicular electric field decreases the band gap and a semiconductor-to-topological insulator transition is revealed. Uniaxial and biaxial strains of +8% result in a semiconductor-to-metal transition. Nanoribbons of BC6N having zigzag edge with even (odd) values of widths, become metal (semiconductor), while the armchair edge nanoribbons exhibit robust semiconducting behavior. In addition, we systematically investigate the effect of surface adatom and molecule, substitutional impurity and defect engineering on the electronic properties of single-layer BC6N and found transitions from metal to half-metal, to ferromagnetic metal, to dilute magnetic semiconductor, and even to spin-glass semiconductor. Furthermore we found that, topological defects including vacancies and Stone–Wales type, induce magnetism in single-layer BC6N.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515321700032 Publication Date 2019-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 30 Open Access  
  Notes ; ; Approved Most recent IF: 3.3; 2020 IF: 2.221  
  Call Number UA @ admin @ c:irua:169750 Serial 6530  
Permanent link to this record
 

 
Author Bafekry, A. url  openurl
  Title Investigation of the effects of defects and impurities on nanostructures consisting of Group IV and V elements using First-principles calculations Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue (up) Pages 126 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168738 Serial 6554  
Permanent link to this record
 

 
Author Bafekry, A.; Van Nguyen, C.; Stampfl, C.; Akgenc, B.; Ghergherehchi, M. pdf  doi
openurl 
  Title Oxygen vacancies in the single layer of Ti₂CO₂ MXene: effects of gating voltage, mechanical strain, and atomic impurities Type A1 Journal article
  Year 2020 Publication Physica Status Solidi B-Basic Solid State Physics Abbreviated Journal Phys Status Solidi B  
  Volume Issue (up) Pages 2000343-2000349  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, using first-principles calculations the structural and electronic properties of the Ti(2)CO(2)MXene monolayer with and without oxygen vacancies are systematically investigated with different defect concentrations and patterns, including partial, linear, local, and hexagonal types. The Ti(2)CO(2)monolayer is found to be a semiconductor with a bandgap of 0.35 eV. The introduction of oxygen vacancies tends to increase the bandgap and leads to electronic phase transitions from nonmagnetic semiconductors to half-metals. Moreover, the semiconducting characteristic of O-vacancy Ti(2)CO(2)can be adjusted via electric fields, strain, and F-atom substitution. In particular, an electric field can be used to alter the nonmagnetic semiconductor of O-vacancy Ti(2)CO(2)into a magnetic one or into a half-metal, whereas the electronic phase transition from a semiconductor to metal can be achieved by applying strain and F-atom substitution. The results provide a useful guide for practical applications of O-vacancy Ti(2)CO(2)monolayers in nanoelectronic and spinstronic nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571060800001 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 1.6; 2020 IF: 1.674  
  Call Number UA @ admin @ c:irua:171948 Serial 6576  
Permanent link to this record
 

 
Author Bafekry, A.; Akgenc, B.; Shayesteh, S.F.; Mortazavi, B. pdf  url
doi  openurl
  Title Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 505 Issue (up) Pages 144450-144459  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we explore the electronic properties of C3N, C3N4 and C4N3 and graphene (Gr) van der Waals heterostructures by conducing extensive first-principles calculations. The acquired results show that these heterostructures can show diverse electronic properties, such as the metal (Gr on C3N), semiconductor with narrow band gap (Gr on C3N4) and ferromagnetic-metal (Gr on C4N3). We furthermore explored the effect of vacancies, atom substitution, topological, antisite and Stone-Wales defects on the structural and electronic properties of considered heterostructures. Our results show that the vacancy defects introduce localized states near the Fermi level and create a local magnetic moment. The Gr/C3N heterostructures with the single and double vacancy defects exhibit a ferromagnetic-metal, while Stone-Wales defects show an indirect semiconductor with the band gap of 0.2 eV. The effects of adsorption and insertion of O, C, Be, Cr, Fe and Co atoms on the electronic properties of Gr/C3N have been also elaborately studied. Our results highlight that the electronic and magnetic properties of garphene/carbon-nitride lateral heterostructures can be effectively modified by point defects and impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510846500052 Publication Date 2019-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 26 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167732 Serial 6638  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C. doi  openurl
  Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume Issue (up) Pages 1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543344800001 Publication Date 2020-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2020 IF: 2.588  
  Call Number UA @ admin @ c:irua:169754 Serial 6651  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue (up) Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539083500049 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial 6655  
Permanent link to this record
 

 
Author Obeid, M.M.; Bafekry, A.; Rehman, S.U.; Nguyen, C., V. pdf  doi
openurl 
  Title A type-II GaSe/HfS₂ van der Waals heterostructure as promising photocatalyst with high carrier mobility Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 534 Issue (up) Pages 147607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the electronic, optical, and photocatalytic properties of GaSe/HfS2 heterostructure are studied via first-principles calculations. The stability of the vertically stacked heterobilayers is validated by the binding energy, phonon spectrum, and ab initio molecular dynamics simulation. The results reveal that the most stable GaSe/HfS2 heterobilayer retains a type-II alignment with an indirect bandgap 1.40 eV. As well, the results also show strong optical absorption intensity in the studied heterostructure (1.8 x 10(5) cm(-1)). The calculated hole mobility is 1376 cm(2) V-1 s(-1), while electron mobility reaches 911 cm(2) V-1 s(-1) along the armchair and zigzag directions. By applying an external electric field, the bandgap and band offset of the designed heterostructure can be effectively modified. Remarkably, a stronger external electric field can create nearly free electron states in the vicinity of the bottom of the conduction band, which induces indirect-to-direct bandgap transition as well as a semiconductor-to-metal transition. In contrast, the electronic properties of GaSe/HfS2 heterostructure are predicted to be insensitive to biaxial strain. The current work reveals that GaSe/HfS2 heterostructure is a promising candidate as a novel photocatalytic material for hydrogen generation in the visible range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582367700045 Publication Date 2020-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:174301 Serial 6682  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 564 Issue (up) Pages 150326  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675534500002 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:180421 Serial 6970  
Permanent link to this record
 

 
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F. pdf  doi
openurl 
  Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
  Year 2021 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 27 Issue (up) Pages 101534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711791100002 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184138 Serial 6979  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Gogova, D.; Hoat, D.M.; Ghergherehchi, M.; Chuong, N.V.; Feghhi, S.A.H. url  doi
openurl 
  Title Novel two-dimensional ZnO₂, CdO₂ and HgO₂ monolayers: a first-principles-based prediction Type A1 Journal article
  Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 45 Issue (up) Pages 9368-9374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the existence of monolayers with the chemical formula XO2, where X = Zn, Cd, and Hg with hexagonal and tetragonal lattice structures is theoretically predicted by means of first principles calculations. Through cohesive energy calculation and phonon dispersion simulation, it has been proven that the two-dimensional XO2 monolayers proposed are energetically and dynamically stable suggesting their potential experimental realization. Our detailed study demonstrates that these novel newly predicted materials are half-metals and dilute magnetic semiconductors, and they exhibit magnetism in the ground state. The half-metallic character could find many applications in electronic and spintronic devices. Research into the magnetic properties revealed here can enrich theoretical knowledge in this area and provide more potential candidates for XO2 2D-based materials and van der Waals heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000645671700001 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:178245 Serial 7006  
Permanent link to this record
 

 
Author Hoat, D.M.; Nguyen, D.K.; Bafekry, A.; Van On, V.; Ul Haq, B.; Rivas-Silva, J.F.; Cocoletzi, G.H. pdf  doi
openurl 
  Title Strain-driven modulation of the electronic, optical and thermoelectric properties of beta-antimonene monolayer : a hybrid functional study Type A1 Journal article
  Year 2021 Publication Materials Science In Semiconductor Processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 131 Issue (up) Pages 105878  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic, optical, and thermoelectric properties of the beta-antimonene (beta-Sb) monolayer under the external biaxial strain effects are fully investigated through the first-principles calculations. The studied two-dimensional (2D) system is dynamically and structurally stable as examined via phonon spectrum and cohesive energy. At equilibrium, the beta-Sb single layer exhibits an indirect band gap of 1.310 and 1.786 eV as predicted by the PBE and HSE06 functionals, respectively. Applying external strain may induce the indirect-direct gap transition and significant variation of the energy gap. The calculated optical spectra indicate the enhancement of the optical absorption in a wide energy range from infrared to ultraviolet as induced by the applied strain. In the visible and ultraviolet regime, the absorption coefficient can reach values as large as 82.700 (10(4)/cm) and 91.458 (10(4)/cm). Results suggest that the thermoelectric performance may be improved considerably by applying proper external strain with the figure of merit reaching a value of 0.665. Our work demonstrates that the external biaxial strains may be an effective method to make the beta-Sb monolayer prospective 2D material for optoelectronic and thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663422800002 Publication Date 2021-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.359  
  Call Number UA @ admin @ c:irua:179565 Serial 7021  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Yagmurcukardes, M.; Gogova, D.; Ghergherehchi, M.; Akgenc, B.; Feghhi, S.A.H. pdf  url
doi  openurl
  Title Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Surface Science Abbreviated Journal Surf Sci  
  Volume 707 Issue (up) Pages 121796  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, electronic, optic and vibrational properties of Zinc antimonide (ZnSb) monolayers and their func-tionalized (semi-fluorinated and fully chlorinated) structures are investigated by means of the first-principles calculations. The phonon dispersion curves reveal the presence of imaginary frequencies and thus confirm the dynamical instability of ZnSb monolayer. The calculated electronic band structure corroborates the metallic character with fully-relativistic calculations. Moreover, we analyze the surface functionalization effect on the structural, vibrational, and electronic properties of the pristine ZnSb monolayer. The semi-fluorinated and fully-chlorinated ZnSb monolayers are shown to be dynamically stable in contrast to the ZnSb monolayer. At the same time, semi-fluorination and fully-chlorination of ZnSb monolayer could effectively modulate the metallic elec-tronic properties of pristine ZnSb. In addition, a magnetic metal to a nonmagnetic semiconductor transition with a band gap of 1 eV is achieved via fluorination, whereas a transition to a semiconducting state with 1.4 eV band gap is found via chlorination of the ZnSb monolayer. According to the optical properties analysis, the first ab-sorption peaks of the fluorinated-and chlorinated-ZnSb monolayers along the in-plane polarization are placed in the infrared range of spectrum, while they are in the middle ultraviolet for the out-of-plane polarization. Interestingly, the optically anisotropic behavior of these novel monolayers along the in-plane polarizations is highly desirable for design of polarization-sensitive photodetectors. The results of the calculations clearly proved that the tunable electronic properties of the ZnSb monolayer can be realized by chemical functionalization for application in the next generation nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626633500001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.062  
  Call Number UA @ admin @ c:irua:177623 Serial 7026  
Permanent link to this record
 

 
Author Nguyen, D.K.; Hoat, D.M.; Bafekry, A.; Van On, V.; Rivas-Silva, J.F.; Naseri, M.; Cocoletzi, G.H. pdf  doi
openurl 
  Title Theoretical prediction of the PtOX (X = S and Se) monolayers as promising optoelectronic and thermoelectric 2D materials Type A1 Journal article
  Year 2021 Publication Physica E-Low-Dimensional Systems & Nanostructures Abbreviated Journal Physica E  
  Volume 131 Issue (up) Pages 114732  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, two new monolayers, namely PtOS and PtOSe, are theoretically predicted using first-principles calculations. Structural, electronic, optical and thermoelectric properties are explored using full-potential linearized augmented plane-wave (FP-LAPW) method and the semiclassical Boltzmann transport theory. Predicted two-dimensional (2D) materials show good dynamical, thermodynamic and structural stability. Calculated electronic structures indicate the indirect gap semiconductor nature of the PtOS and PtOSe single layers with energy gap of 1.346(2.436) and 0.978(1.978) eV as calculated with the WC(HSE06) functional, respectively. Density of states spectra and valence charge distribution maps suggest a mix of covalent and ionic characters of the chemical bonds. 2D materials at hand exhibit good absorption property in the visible regime with coefficient value reaching the order of 105/cm, even much larger in the ultraviolet, suggesting the promising optoelectronic applicability. Finally, the thermoelectric parameters including electrical conductivity, thermal conductivity, Seebeck coefficient, power factor and figure of merit are determined and analyzed. Results indicate prospective thermoelectric performance of both considered single layers as demonstrated by large figure of merit close to unity. Our work introduces two new 2D multifunctional materials that may possess potential applications in the optoelectronic and thermoelectric nano-devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000647410700007 Publication Date 2021-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.221  
  Call Number UA @ admin @ c:irua:178346 Serial 7030  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Khatibani, A.B.; Ziabari, A. abdolahzadeh; Ghergherehchi, M.; Nedaei, S.; Shayesteh, S.F.; Gogova, D. pdf  url
doi  openurl
  Title Tunable electronic and magnetic properties of MoSi₂N₄ monolayer via vacancy defects, atomic adsorption and atomic doping Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 559 Issue (up) Pages 149862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two dimensional MoSi2N4 (MSN) monolayer exhibiting rich physical and chemical properties was synthesized for the first time last year. We have used the spin-polarized density functional theory to study the effect of different types of point defects on the structural, electronic, and magnetic properties of the MSN monolayer. Adsorbed, substitutionally doped (at different lattice sites), and some kind of vacancies have been considered as point defects. The computational results show all defects studied decrease the MSN monolayer band gap. We found out the H-, O-, and P-doped MSN are n-type conductors. The arsenic-doped MSN, and MSN with vacancy defects have a magnetic moment. The MSN with a Si vacancy defect is a half-metallic which is favorable for spintronic applications, while the MSN with a single N vacancy or double vacancy (N + S) defects are metallic, i. e., beneficial as spin filters and chemical sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655645300001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:179098 Serial 7038  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Peeters, F.M. url  doi
openurl 
  Title Dirac half-metallicity of thin PdCl₃ nanosheets : investigation of the effects of external fields, surface adsorption and defect engineering on the electronic and magnetic properties Type A1 Journal article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue (up) 1 Pages 213-215  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract PdCl3 belongs to a novel class of Dirac materials with Dirac spin-gapless semiconducting characteristics. In this paper based, on first-principles calculations, we have systematically investigated the effect of adatom adsorption, vacancy defects, electric field, strain, edge states and layer thickness on the electronic and magnetic properties of PdCl3 (palladium trichloride). Our results show that when spin-orbital coupling is included, PdCl3 exhibits the quantum anomalous Hall effect with a non-trivial band gap of 24 meV. With increasing number of layers, from monolayer to bulk, a transition occurs from a Dirac half-metal to a ferromagnetic metal. On application of a perpendicular electrical field to bilayer PdCl3, we find that the energy band gap decreases with increasing field. Uniaxial and biaxial strain, significantly modifies the electronic structure depending on the strain type and magnitude. Adsorption of adatom and topological defects have a dramatic effect on the electronic and magnetic properties of PdCl3. In particular, the structure can become a metal (Na), half-metal (Be, Ca, Al, Ti, V, Cr, Fe and Cu with, respective, 0.72, 9.71, 7.14, 6.90, 9.71, 4.33 and 9.5 μB magnetic moments), ferromagnetic-metal (Sc, Mn and Co with 4.55, 7.93 and 2.0 μB), spin-glass semiconductor (Mg, Ni with 3.30 and 8.63 μB), and dilute-magnetic semiconductor (Li, K and Zn with 9.0, 9.0 and 5.80 μB magnetic moment, respectively). Single Pd and double Pd + Cl vacancies in PdCl3 display dilute-magnetic semiconductor characteristics, while with a single Cl vacancy, the material becomes a half-metal. The calculated optical properties of PdCl3 suggest it could be a good candidate for microelectronic and optoelectronics devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562795700001 Publication Date 2020-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). We are thankful for comments by Sevil Sarikurt from the department of physics in Dokuz Eylul University. In addition, we acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number UA @ admin @ c:irua:169751 Serial 6483  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 540 Issue (up) 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavi, B.; Faraji, M.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Nguyen, C.; Ghergherehchi, M.; Feghhi, S.A.H. url  doi
openurl 
  Title Ab initio prediction of semiconductivity in a novel two-dimensional Sb₂X₃ (X= S, Se, Te) monolayers with orthorhombic structure Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue (up) 1 Pages 10366  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Sb2S3 and Sb2Se3 are well-known layered bulk structures with weak van der Waals interactions. In this work we explore the atomic lattice, dynamical stability, electronic and optical properties of Sb2S3, Sb2Se3 and Sb2Te3 monolayers using the density functional theory simulations. Molecular dynamics and phonon dispersion results show the desirable thermal and dynamical stability of studied nanosheets. On the basis of HSE06 and PBE/GGA functionals, we show that all the considered novel monolayers are semiconductors. Using the HSE06 functional the electronic bandgap of Sb2S3, Sb2Se3 and Sb2Te3 monolayers are predicted to be 2.15, 1.35 and 1.37 eV, respectively. Optical simulations show that the first absorption coefficient peak for Sb2S3, Sb2Se3 and Sb2Te3 monolayers along in-plane polarization is suitable for the absorption of the visible and IR range of light. Interestingly, optically anisotropic character along planar directions can be desirable for polarization-sensitive photodetectors. Furthermore, we systematically investigate the electrical transport properties with combined first-principles and Boltzmann transport theory calculations. At optimal doping concentration, we found the considerable larger power factor values of 2.69, 4.91, and 5.45 for hole-doped Sb2S3, Sb2Se3, and Sb2Te3, respectively. This study highlights the bright prospect for the application of Sb2S3, Sb2Se3 and Sb2Te3 nanosheets in novel electronic, optical and energy conversion systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656961400019 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ admin @ c:irua:179188 Serial 6965  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Akgenc, B.; Mortazavi, B.; Ghergherehchi, M.; Nguyen, C.V. url  doi
openurl 
  Title Embedding of atoms into the nanopore sites of the C₆N₆ and C₆N₈ porous carbon nitride monolayers with tunable electronic properties Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 22 Issue (up) 11 Pages 6418-6433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 mu(B), and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 mu(B), respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523409400037 Publication Date 2020-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 17 Open Access  
  Notes ; This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 4.123  
  Call Number UA @ admin @ c:irua:168617 Serial 6504  
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Ghergherehchi, M.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the bandgap and introducing magnetism into monolayer BC3 by strain/defect engineering and adatom/molecule adsorption Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 126 Issue (up) 14 Pages 144304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching -8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in -8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0-1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503995300019 Publication Date 2019-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 48 Open Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:165160 Serial 6328  
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M. url  doi
openurl 
  Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 118 Issue (up) 14 Pages 143102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637703700001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:177731 Serial 6985  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Fadlallah, M.M.; Stampfl, C.; Ghergherehchi, M.; Mushtaq, M.; Feghhi, S.A.H.; Gogova, D. url  doi
openurl 
  Title Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula with outstanding properties : a first-principles calculation study Type A1 Journal article
  Year 2021 Publication ACS Omega Abbreviated Journal  
  Volume 6 Issue (up) 14 Pages 9433-9441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(epsilon) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 x 10(11) W m(-1) K-2 s(-1) for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640649500012 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178395 Serial 7017  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Hoat, D.M.; Shahrokhi, M.; Fadlallah, M.M.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title MoSi₂N₄ single-layer : a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue (up) 15 Pages 155303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, the 2D form of MoSi2N4 has been successfully fabricated (Hong et al 2020 Science 369 670). Motivated by these recent experimental results, we investigate the structural, mechanical, thermal, electronic and optical properties of the MoSi2N4 monolayer. The mechanical study confirms the stability of the MoSi2N4 monolayer. The Young's modulus decreases by similar to 30%, while the Poisson's ratio increases by similar to 30% compared to the corresponding values of graphene. In addition, the MoSi2N4 monolayer's work function is very similar to that of phosphorene and MoS2 monolayers. The electronic structure shows that the MoSi2N4 monolayer is an indirect semiconductor with a band gaps of 1.79 (2.35) eV using the GGA (HSE06) functional. The thermoelectric performance of the MoSi2N4 monolayer has been revealed and a figure of merit slightly larger than unity at high temperatures is calculated. The optical analysis shows that the first absorption peak for in-plane polarization is located in the visible range of the spectrum, therefore, the MoSi2N4 monolayer is a promising candidate for advanced optoelectronic nanodevices. In summary, the fascinating MoSi2N4 monoloayer is a promising 2D material for many applications due to its unique physical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613849300001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015M2B2A4033123). Computational resources were provided by the Flemish Supercomputer Center (VSC) and TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure). ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:176167 Serial 6693  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Naseri, M.; Fadlallah, M.M.; Faraji, M.; Ghergherehchi, M.; Gogova, D.; Feghhi, S.A.H. url  doi
openurl 
  Title Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer : a first-principles calculation Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue (up) 15 Pages 155103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a two-dimensional (2D) MoSi 2N 4 (MSN) structure has been successfully synthesized [Hong et al., Science 369(6504), 670-674 (2020)]. Motivated by this result, we investigate the structural, electronic, and optical properties of MSN monolayer (MSN-1L) and bilayer (MSN-2L) under the applied electric field (E-field) and strain using density functional theory calculations. We find that the MSN-2L is a semiconductor with an indirect bandgap of 1.60 (1.80)eV using Perdew-Burke-Ernzerhof (HSE06). The bandgap of MSN-2L decreases as the E-field increases from 0.1 to 0.6V/angstrom and for larger E-field up to 1.0V/angstrom the bilayer becomes metallic. As the vertical strain increases, the bandgap decreases; more interestingly, a semiconductor to a metal phase transition is observed at a strain of 12 %. Furthermore, the optical response of the MSN-2L is in the ultraviolet (UV) region of the electromagnetic spectrum. The absorption edge exhibits a blue shift by applying an E-field or a vertical compressive strain. The obtained interesting properties suggest MSN-2L as a promising material in electro-mechanical and UV opto-mechanical devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640620400003 Publication Date 2021-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:178233 Serial 6981  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F. pdf  url
doi  openurl
  Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 157 Issue (up) 157 Pages 371-384  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502548500044 Publication Date 2019-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 49 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:165024 Serial 6283  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue (up) 16 Pages 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 22 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Ziabari, A.A.; Fadlallah, M.M.; Nguyen, C., V; Ghergherehchi, M.; Feghhi, S.A.H. url  doi
openurl 
  Title A van der Waals heterostructure of MoS₂/MoSi₂N₄ : a first-principles study Type A1 Journal article
  Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 45 Issue (up) 18 Pages 8291-8296  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the successful preparation of MoSi2N4 monolayers in the last year [Y.-L. Hong et al., Science, 2020, 369, 670-674], we investigate the structural, electronic and optical properties of the MoS2/MoSi2N4 heterostructure (HTS). The phonon dispersion and the binding energy calculations refer to the stability of the HTS. The heterostructure has an indirect bandgap of 1.26 (1.84) eV using PBE (HSE06) which is smaller than the corresponding value of MoSi2N4 and MoS2 monolayers. We find that the work function of the MoS2/MoSi2N4 HTS is smaller than the corresponding value of its individual monolayers. The heterostructure structure can enhance the absorption of light spectra not only in the ultraviolet region but also in the visible region as compared to MoSi2N4 and MoS2 monolayers. The refractive index behaviour of the HTS can be described as the cumulative effect which is well described in terms of a combination of the individual effects (the refractive index of MoSi2N4 and MoS2 monolayers).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642436200001 Publication Date 2021-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:178300 Serial 6964  
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M. url  doi
openurl 
  Title C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue (up) 19 Pages 12485-12499  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional polyaniline with structural unit C3N is an indirect semiconductor with 0.4 eV band gap, which has attracted a lot of interest because of its unusual electronic, optoelectronic, thermal, and mechanical properties useful for various applications. Adsorption of adatoms is an effective method to improve and tune the properties of C3N. Using first-principles calculations, we investigated the adsorption of adatoms, including H, O, S, F, Cl, B, C, Si, N, P, Al, Li, Na, K, Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, on C3N. Depending on the adatom size and the number of valence electrons, they may induce metallic, half-metallic, semiconducting, and ferromagnetic-metallic behavior. In addition, we investigate the effects of an electrical field, charging, and strain on C3N and found how the electronic and magnetic properties are modified. Semi- and full hydrogenation are studied. From the mechanical and thermal stability of C3N monolayer, we found it to be a hard material that can withstand large strain. From our calculations, we gained novel insights into the properties of C3N demonstrating its unique electronic and magnetic properties that can be useful for semiconducting, nanosensor, and catalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468368800053 Publication Date 2019-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 67 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FW0-V1). The authors thank Keyvan Nazifi from the Cluster Center of Faculty of Science, Guilan University, for his help. They acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:160323 Serial 5196  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: