|   | 
Details
   web
Records
Author Sorée, B.; Pham, A.-T.; Sels, D.; Magnus, W.
Title The junctionless nanowire transistor Type H3 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages ?
Keywords H3 Book chapter; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Pan Stanford Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 9789814364027 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:93074 Serial 1754
Permanent link to this record
 

 
Author Magnus, W.; Carrillo-Nunez, H.; Sorée, B.
Title Transport in nanostructures Type H3 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages
Keywords H3 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Pan Stanford Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 9789814364027 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:93075 Serial 3724
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 1-14
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000274282900001 Publication Date 2009-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500; ISBN (down) 978-90-481-3118-1 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99226 Serial 3761
Permanent link to this record
 

 
Author Bending, S.J.; Milošević, M.V.; Moshchalkov, V.V.
Title Polarity-dependent vortex pinning and spontaneous vortex-antivortex structures in superconductor/ferromagnet hybrids Type H1 Book chapter
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 299-322
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Springer Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 978-3-642-15136-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:106139 Serial 2659
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W.
Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 247-248
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 978-1-4244-5416-7 Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99225 Serial 3506
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.
Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal
Volume Issue Pages 295202 pp
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000532366000001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 19 Open Access
Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169523 Serial 6444
Permanent link to this record
 

 
Author Lamoen, D.; Michel, K.H.
Title Molecular structure, crystal field and orientational order in solid C60 Type H1 Book chapter
Year 1994 Publication Abbreviated Journal
Volume Issue Pages 183-202
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos A1994BE86T00011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 0-7923-3109-5 Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:9355 Serial 2186
Permanent link to this record
 

 
Author Lujan, G.S.; Magnus, W.; Soree, B.; Pourghaderi, M.A.; Veloso, A.; van Dal, M.J.H.; Lauwers, A.; Kubicek, S.; De Gendt, S.; Heyns, M.; De Meyer, K.;
Title A new method to calculate leakage current and its applications for sub-45nm MOSFETs Type H1 Book chapter
Year 2005 Publication Solid-State Device Research (ESSDERC), European Conference T2 – ESSDERC 2005 : proceedings of 35th European Solid-State Device Research Conference, September 12-16, 2005, Grenoble, France Abbreviated Journal
Volume Issue Pages 489-492
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract This paper proposes a new quantum mechanical model for the calculation of leakage currents. The model incorporates both variational calculus and the transfer matrix method to compute the subband energies and the life times of the inversion layer states. The use of variational calculus simplifies the subband energy calculation due to the analytical firm of the wave functions, which offers an attractive perspective towards the calculation of the electron mobility in the channel. The model can be extended to high-k dielectrics with several layers. Good agreement between experimental data and simulation results is obtained for metal gate capacitors.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication S.l. Editor
Language Wos 000236176200114 Publication Date 2005-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 0-7803-9203-5 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103691 Serial 2323
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 9 Pages 092801
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342568000020 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M.
Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
Year 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
Volume 51 Issue 8 Pages 082903,1-082903,29
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000281905000026 Publication Date 2010-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2488; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.077 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291
Call Number UA @ lucian @ c:irua:84880 Serial 106
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M.
Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 547-548
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000281590800258 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84893 Serial 217
Permanent link to this record
 

 
Author Maistrenko, Y.L.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V.L.
Title Cascades of multiheaded chimera states for coupled phase oscillators Type A1 Journal article
Year 2014 Publication International journal of bifurcation and chaos in applied sciences and engineering Abbreviated Journal Int J Bifurcat Chaos
Volume 24 Issue 8 Pages 1440014
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an “eight-like” limit cycle resulting eventually in a chimera state.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000341494900015 Publication Date 2014-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-1274;1793-6551; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.329 Times cited Open Access
Notes Approved Most recent IF: 1.329; 2014 IF: 1.078
Call Number UA @ lucian @ c:irua:119303 Serial 285
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V.
Title Classical atomic bilayers Type H1 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 523-527
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Plenum Press Place of Publication New York Editor
Language Wos 000083193600095 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24177 Serial 363
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B
Volume 46 Issue Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:2998 Serial 890
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Elusive s-f intrasite interactions and double exchange in solids: ferromagnetic versus nonmagnetic ground state Type A1 Journal article
Year 2009 Publication Journal of experimental and theoretical physics Abbreviated Journal J Exp Theor Phys+
Volume 109 Issue 2 Pages 286-292
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion, which results in the electronic term structure of atoms and is responsible for Hunds rules. By expanding the Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present in solids as a correlation effect, which means that the interaction requires a multideterminant version of the Hartree-Fock method. Of particular interest is the case where this interaction couples states of localized ( f) and delocalized ( s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider a simple model in the framework of an effective limited configuration interaction method with one localized f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic state. The model is relevant for solids with localized and itinerant electron states.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000270506500014 Publication Date 2009-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7761;1090-6509; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.196 Times cited 3 Open Access
Notes Approved Most recent IF: 1.196; 2009 IF: 0.871
Call Number UA @ lucian @ c:irua:79163 Serial 1027
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M.
Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 4 Issue 4 Pages 7319
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000346272900001 Publication Date 2014-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 38 Open Access
Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:122743 Serial 1062
Permanent link to this record
 

 
Author Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M.
Title Graphane Type A1 Journal article
Year 2015 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci
Volume 5 Issue 5 Pages 255-272
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomically thin crystals have recently been the focus of attention, in particular, after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class, the chemically derived graphenes have attracted tremendous interest. It was shown that, although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane' (CH), fluorographene (CF), and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview surveys structural, electronic, magnetic, vibrational, and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well. WIREs Comput Mol Sci 2015, 5:255-272. doi: 10.1002/wcms.1216 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352862700001 Publication Date 2015-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-0876; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 14.016 Times cited 54 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. H. Sahin is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 14.016; 2015 IF: 11.885
Call Number c:irua:125996 Serial 1366
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Graphene: a perfect nanoballoon Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 93 Issue 19 Pages 193107,1-193107,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000260944100090 Publication Date 2008-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 295 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:73196 Serial 1368
Permanent link to this record
 

 
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M.
Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 425502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000362573500008 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 20 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:128759 Serial 3971
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Strain engineering of the electronic properties of bilayer graphene quantum dots: Strain engineering of the electronic properties of bilayer graphene quantum dots Type A1 Journal article
Year 2015 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 10 Issue 10 Pages 39-45
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of mechanical deformations on the elec- tronic properties of hexagonal flakes of bilayer graphene. The behavior of electrons induced by triaxial strain can be de- scribed by an effective pseudo-magnetic field which is homo- geneous in the center of the flake. We find that in-plane strain, applied to both layers equally, can break the layer symmetry leading to different behavior in the top and bottom layers of graphene. At low energy, just one of the layers feels

the pseudo-magnetic field: the zero-energy pseudo-Landau level is missing in the second layer, thus creating a gap be- tween the lowest non-zero levels. While the layer asymmetry is most significant at zero energy, interaction with the edges of the flake extends the effect to higher pseudo-Landau lev- els. The behavior of the top and bottom layers may be re- versed by rotating the triaxial strain by 60°.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368814500005 Publication Date 2015-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 9 Open Access
Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. Approved Most recent IF: 3.032; 2015 IF: 2.142
Call Number c:irua:129592 Serial 3970
Permanent link to this record
 

 
Author Milovanović, S.P.; Moldovan, D.; Peeters, F.M.
Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 154308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363535800022 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:129452 Serial 3969
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.
Title Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue Pages 6039-6042
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000079254300016 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 59 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24156 Serial 1545
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Inelastic electron-vortex-beam scattering Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 032703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000351035000004 Publication Date 2015-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 31 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607
Permanent link to this record
 

 
Author Stosic, D.; Mulkers, J.; Van Waeyenberge, B.; Ludermir, T.B.; Milošević, M.V.
Title Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 21 Pages 214418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topological spin configurations in materials with chiral Dzyaloshinskii-Moriya interaction (DMI), that are potentially useful for storing or processing information. To date, DMI has been found in few bulk materials, but can also be induced in atomically thin magnetic films in contact with surfaces with large spin-orbit interactions. Recent experiments have reported that isolated magnetic skyrmions can be stabilized even near room temperature in few-atom-thick magnetic layers sandwiched between materials that provide asymmetric spin-orbit coupling. Here we present the minimum-energy path analysis of three distinct mechanisms for the skyrmion collapse, based on ab initio input and the performed atomic-spin simulations. We focus on the stability of a skyrmion in three atomic layers of Co, either epitaxial on the Pt(111) surface or within a hybrid multilayer where DMI nontrivially varies per monolayer due to competition between different symmetry breaking from two sides of the Co film. In laterally finite systems, their constrained geometry causes poor thermal stability of the skyrmion toward collapse at the boundary, which we show to be resolved by designing the high-DMI structure within an extended film with lower or no DMI.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404015500001 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access
Notes This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:144865 Serial 4704
Permanent link to this record
 

 
Author Devreese, J.T.; Verbist, G.; Peeters, F.M.
Title Large bipolarons and high-Tc materials Type H3 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 385-391
Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Cambridge Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:11700 Serial 1778
Permanent link to this record
 

 
Author Janssens, K.L.; Peeters, F.M.; Schweigert, V.A.
Title Magnetic field dependence of the properties of excitons confined in a quantum disk Type A1 Journal article
Year 2001 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 224 Issue Pages 763-768
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000168432100030 Publication Date 2004-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes Approved Most recent IF: 1.674; 2001 IF: 0.873
Call Number UA @ lucian @ c:irua:37311 Serial 1872
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Magnetization of mesoscopic superconducting discs Type A1 Journal article
Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 79 Issue Pages 4653-4656
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997YK36500035 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 165 Open Access
Notes Approved Most recent IF: 8.462; 1997 IF: 6.140
Call Number UA @ lucian @ c:irua:19275 Serial 1896
Permanent link to this record
 

 
Author Deo, P.S.; Peeters, F.M.; Schweigert, V.A.
Title Mesoscopic superconducting disks Type A1 Journal article
Year 1999 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 25 Issue Pages 1195-1211
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000082323800050 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.123 Times cited 22 Open Access
Notes Approved Most recent IF: 2.123; 1999 IF: 0.649
Call Number UA @ lucian @ c:irua:26991 Serial 2001
Permanent link to this record
 

 
Author Ivanov, V.A.; Betouras, J.J.; Peeters, F.M.
Title MgB2 : superconductivity and pressure effects Type P1 Proceeding
Year 2003 Publication Abbreviated Journal
Volume Issue Pages 35-46
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We present a Ginzburg-Landau theory for a two-band superconductor with emphasis on MgB2. We propose experiments which lead to identification of the possible scenarios: whether both sigma- and pi-bands superconduct or sigma-alone. According to the second scenario a microscopic theory of superconducting MgB2 is proposed based on the strongly interacting or-electrons and non-correlated pi-electrons of boron ions. The kinematic and Coulomb interactions of sigma-electrons provide the superconducting state with an anisotropic gap of s(*)-wave symmetry. The critical temperature T-c has a non-monotonic dependence on the distance r between the centers of gravity of sigma- and pi-bands. The position of MgB2 on a bell-shaped curve T-c (r) is identified in the overdoped region. The derived superconducting density of electronic states is in agreement with available experimental and theoretical data. It is argued that the effects of pressure are crucial to identify the microscopic origin of superconductivity in MgB2. Possibilities for increase of T, are discussed.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 106 Series Issue Edition
ISSN 1-4020-1372-8 ISBN (down) Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94869 Serial 2020
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 214504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355647100003 Publication Date 2015-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN (down) Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126433 Serial 2089
Permanent link to this record