toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Al-Emam, E.; Beltran, V.; De Meyer, S.; Nuyts, G.; Wetemans, V.; De Wael, K.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Removal of a past varnish treatment from a 19th-century Belgian wall painting by means of a solvent-loaded double network hydrogel Type A1 Journal article
  Year 2021 Publication Polymers Abbreviated Journal Polymers-Basel  
  Volume 13 Issue 16 Pages 2651-20  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Polymeric materials have been used by painting conservator-restorers as consolidants and/or varnishes for wall paintings. The application of these materials is carried out when confronting loose paint layers or as a protective coating. However, these materials deteriorate and cause physiochemical alterations to the treated surface. In the past, the monumental neo-gothic wall painting 'The Last Judgment' in the chapel of Sint-Jan Berchmanscollege in Antwerp, Belgium was treated with a synthetic polymeric material. This varnish deteriorated significantly and turned brown, obscuring the paint layers. Given also that the varnish was applied to some parts of the wall painting and did not cover the entire surface, it was necessary to remove it in order to restore the original appearance of the wall painting. Previous attempts carried out by conservator-restorers made use of traditional cleaning methods, which led to damage of the fragile paint layers. Therefore, gel cleaning was proposed as a less invasive and more controllable method for gently softening and removing the varnish. The work started by identifying the paint stratigraphy and the deteriorated varnish via optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. A polyvinyl alcohol-borax/agarose (PVA-B/AG) hydrogel loaded with a number of solvents/solvent mixtures was employed in a series of tests to select the most suitable hydrogel composite. By means of the hydrogel composite loaded with 10% propylene carbonate, it was possible to safely remove the brown varnish layer. The results were verified by visual examinations (under visible light 'VIS' and ultraviolet light 'UV') as well as OM and FTIR spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000690248000001 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.364  
  Call Number UA @ admin @ c:irua:181567 Serial 8470  
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G. pdf  url
doi  openurl
  Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 177 Issue Pages 107304  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000850000900001 Publication Date 2022-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.8  
  Call Number UA @ admin @ c:irua:187493 Serial 7138  
Permanent link to this record
 

 
Author Schalm, O.; Janssens, K.; Caen, J.; Adams, F. openurl 
  Title Chemische en morfologische karakterisatie van de grissailles van Capronnier met behulp van EPXMA Type P3 Proceeding
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:32404 Serial 5518  
Permanent link to this record
 

 
Author Schalm, O.; Janssens, K.; Caen, J. pdf  doi
openurl 
  Title Characterization of the main causes of deterioration of grisaille paint layers in 19th C. stained-glass windows by J.-B. Capronnier Type A1 Journal article
  Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 58 Issue 4 Pages 589-607  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Twenty-seven glass fragments containing dark coloured grisaille paint layers of different qualities were collected from ten windows of the cathedral St. Michael & St. Gudule in Brussels (Belgium). The windows were made by J.-B. Capronnier (18141891) and cover the period between 1843 and 1878. The samples were cross-sectioned and examined in an electron microscope. Grisaille paint layers are not homogeneous and therefore, it is not meaningful to characterize them in terms of their average composition. Instead, parameters such as granularity, the number of residual gas bubbles per running millimetre of paint, the type of pigments, and the thickness of the paint layer were used to characterize them. The microscopic morphology allows a classification of the grisaille paint layers in four groups, every group associated with a quality level. Moreover, the main causes of the accelerated degradation of some of these paint layers could be explained. The classification made it possible to distinguish two periods in the work of Capronnier: (1) the early period (18431848) is characterized by the presence of either single granular paint layers or of double-layered systems consisting of a granular paint layer on top of a well-melted paint layer. The granular grisaille paint layers tend to pulverize; (2) the later period (18481878) is characterized by the presence of only well-vitrified paint layers. No sign of deterioration was found on the well-vitrified paint layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000182744200002 Publication Date 2003-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited Open Access  
  Notes Approved Most recent IF: 3.241; 2003 IF: 2.361  
  Call Number UA @ admin @ c:irua:41208 Serial 5505  
Permanent link to this record
 

 
Author Jembrih-Simbürger, D.; Neelmeijer, C.; Schalm, O.; Fredrickx, P.; Schreiner, M.; De Vis, K.; Mäder, M.; Schryvers, D.; Caen, J. pdf  doi
openurl 
  Title The colour of silver stained glass : analytical investigations carried out with XRF, SEM/EDX, TEM and IBA Type A1 Journal article
  Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 17 Issue Pages 321-328  
  Keywords A1 Journal article; Art; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Glass treated on its surface with silver compounds and an aluminosilicate, such as ochre or clay, at higher temperatures (between 550 and 650 °C) accepts a wide variety of a yellow colour. It is the aim of this study to investigate the parameters of the manufacturing process affecting the final colour of silver stained glass and to correlate them with the final colour and colour intensity. Therefore, defined mixtures of ochre and a silver compound (AgCl, AgNO3, Ag2SO4, Ag3PO4, Ag2O) were prepared and applied on soda-lime glass. The firing process was modified within the range from 563 to 630 °C and glass samples were analysed after treatment with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy (SEM/EDX), transmission electron microscopy (TEM), as well as ion beam analysis (IBA) with an external beam. Within the scope of IBA simultaneous measurements using particle-induced X-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), and Rutherford backscattering spectrometry (RBS) were carried out in order to obtain the thickness of the Ag-rich surface layer and the depth distribution of Ag. By means of TEM the microstructure of the silver particles was visualised. XRF results show that the lowest amount of Ag could be detected on glass samples treated with silver stain mixtures containing AgCl and Ag2O. A low kiln temperature (e.g. 563 °C) results in a higher silver concentration at the surface and lower penetration depths. Furthermore, the results obtained with SEM/EDX at cross-sections of the glass samples could be confirmed by PIXE, PIGE, RBS, and TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000175158900001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.379; 2002 IF: 4.250  
  Call Number UA @ lucian @ c:irua:48775 Serial 395  
Permanent link to this record
 

 
Author van der Snickt, G.; Schalm, O.; Caen, J.; Janssens, K.; Schreiner, M. pdf  doi
openurl 
  Title Blue enamel on sixteenth- and seventeenth-century window glass : deterioration, microstructure, composition and preparation Type A1 Journal article
  Year 2006 Publication Studies in conservation Abbreviated Journal Stud Conserv  
  Volume 51 Issue Pages 212-222  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000241941100006 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.578 Times cited 8 Open Access  
  Notes Approved Most recent IF: 0.578; 2006 IF: 0.609  
  Call Number UA @ admin @ c:irua:60712 Serial 5492  
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M. pdf  doi
openurl 
  Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
  Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue 8 Pages 812-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab  
  Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000269995300018 Publication Date 2009-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 28 Open Access  
  Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:79647 Serial 1035  
Permanent link to this record
 

 
Author Schalm, O.; de Raedt, I.; Caen, J.; Janssens, K. pdf  doi
openurl 
  Title A methodology for the identification of glass panes of different origin in a single stained glass window: application on two 13th century windows Type A1 Journal article
  Year 2010 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit  
  Volume 11 Issue 4 Pages 487-492  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The chemical composition of 11 glass panes originating from two 13th century non-figurative windows were analyzed by means of Scanning Electron MicroscopyEnergy Dispersive X-ray system (SEM-EDX). The windows were discovered in the back-wall of the triforium during the restoration of the choir of the cathedral St. Michael and St. Gudule in Brussels (Belgium). In order to determine if these windows were fabricated with glass of different origin or not, the compositional difference between the panes were compared with the variation in composition as a result of the following causes: (1) compositional fluctuation between panes cut from the same sheet of glass, (2) compositional fluctuation caused when panes are cut from different sheets that were made with the same batch, (3) compositional fluctuation caused when the glass is made from different batches at the same production center, and (4) compositional fluctuation as a result of glass produced at different fabrication centers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282680500016 Publication Date 2010-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.838 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 1.838; 2010 IF: 1.162  
  Call Number UA @ admin @ c:irua:84942 Serial 5707  
Permanent link to this record
 

 
Author Schalm, O.; Caen, J.; Janssens, K. doi  openurl
  Title Homogeneity, composition and deterioration of window glass fragments and paint layers from two seventeenth-century stained glass windows created by Jan de Caumont (similar to 1580-1659) Type A1 Journal article
  Year 2010 Publication Studies in conservation Abbreviated Journal Stud Conserv  
  Volume 55 Issue 3 Pages 216-226  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285283600009 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.578 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 0.578; 2010 IF: 0.605  
  Call Number UA @ admin @ c:irua:85835 Serial 5645  
Permanent link to this record
 

 
Author Schalm, O.; Proost, K.; De Vis, K.; Cagno, S.; Janssens, K.; Mees, F.; Jacobs, P.; Caen, J. pdf  doi
openurl 
  Title Manganese staining of archaeological glass : the characterization of Mn-rich inclusions in leached layers and a hypothesis of its formation Type A1 Journal article
  Year 2011 Publication Archaeometry Abbreviated Journal Archaeometry  
  Volume 53 Issue 1 Pages 103-122  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract During the study of a large number of archaeological glass fragments, manganese-rich inclusions in leached layers were observed in a limited number of cases. This phenomenon occurs only in black-coloured leached layers. Since the formation mechanism of such manganese-rich inclusions is still unclear, a combination of several analytical techniques was used in order to investigate this phenomenon and, more specifically, to obtain more information on (a) the composition and morphology of the inclusions, (b) the chemical state of Mn and (c) the 3D morphology of the inclusions. A mechanism that might explain the formation of these inclusions is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285418100006 Publication Date 2010-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-813x; 1475-4754 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.47 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 1.47; 2011 IF: 1.183  
  Call Number UA @ admin @ c:irua:88754 Serial 5704  
Permanent link to this record
 

 
Author Cagno, S.; Nuyts, G.; Bugani, S.; De Vis, K.; Schalm, O.; Caen, J.; Helfen, L.; Cotte, M.; Reischig, P.; Janssens, K. doi  openurl
  Title Evaluation of manganese-bodies removal in historical stained glass windows via SR-\mu-XANES/XRF and SR-\mu-CT Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue 12 Pages 2442-2451  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The speed and effectiveness of a conservation treatment used for stained glass windows have been investigated. Dark-coloured Mn-rich stains can be found in the alteration layer of ancient glass artefacts and cause the surface to turn brown/black: this phenomenon is known as Mn-browning or Mn-staining. While in glass manganese is present in the +II or +III oxidation states, in the Mn-rich bodies, manganese is in a higher oxidation state (+IV). In restoration practice, mildly reducing solutions are employed to eliminate the dark colour and restore the clear appearance of the glass. In this paper the effectiveness and side effects of the use of hydroxylamine hydrochloride for this purpose are assessed. Archaeological fragments of stained glass windows, dated to the 14th century and originating from Sidney Sussex College, Cambridge (UK), were examined by means of synchrotron radiation (SR) based microscopic X-ray Absorption Near-Edge Spectroscopy (μ-XANES) and microscopic X-Ray Fluorescence (μ-XRF) and with high resolution computed absorption tomography (μ-CT) before, during and after the treatment. The monitoring of the glass fragments during the treatment allows us to better understand the manner in which the process unfolds and its kinetics. The results obtained reveal that the hydroxylamine hydrochloride treatment is effective, but also that it has a number of unwanted side effects. These findings are useful for optimizing the time and other modalities of the Mn-reducing treatment as well as minimizing its unwanted results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297030400009 Publication Date 2011-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 17 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. Special thanks to Ms Leonie Seliger, head of the stained-glass conservation studio (The Cathedral Studios-The Chapter of Canterbury Cathedral) for the supply of the archaeological samples. The authors gratefully acknowledge ESRF for granting beamtime (proposal EC-602). ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:93848 Serial 5613  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: