|   | 
Details
   web
Records
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235425-235425,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286769100008 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195436,1-195436,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284399200004 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 367 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author Payette, C.; Austing, D.G.; Yu, G.; Gupta, J.A.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S.
Title Branch current behavior at two level anti-crossings in vertical quantum dot single-particle spectra Type A1 Journal article
Year 2010 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 271-272
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study single-electron-elastic-resonant-tunneling through two weakly coupled vertical quantum dots and investigate the branch current behavior at anti-crossings between two single-particle energy levels in the constituent dot spectra that are induced to approach each other by application of an out-of-dot-plane magnetic field. We observe both the familiar case of monotonic transfer of the resonant current strengths between the two branches as well as the less familiar case of concurrent enhancement and suppression (ideally complete cancellation) of the resonant current in the two branches. These two situations can be explained in terms of a simple coherent tunneling model. ©2009 American Institute of Physics
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000281590800127 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:86923 Serial 254
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; van den Broeck, C.
Title Work and dissipation in 2D clusters Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 88 Issue 3 Pages 30001-30001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show by extensive numerical simulations, that far-from-equilibrium experiments on dusty plasmas and on dipole particles in a circular cavity are good candidates for the verification of the Jarzynski equality, the Crooks relation and, to a lesser extent, of the recently obtained microscopic expression for the dissipated work.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000271961400001 Publication Date 2009-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 2 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:86925 Serial 3922
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M.
Title Artificial molecular quantum rings under magnetic field influence Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 7 Pages 073702,1-073702,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground states of a few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affect the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and isospin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single-particle picture, Hunds rules, and many-body effects.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270915600047 Publication Date 2009-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 5 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:86926 Serial 155
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S.
Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
Year 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal
Volume 6 Issue 4 Pages 940-943
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000266597600040 Publication Date 2008-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6351;1610-1642; ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:86927 Serial 2953
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 23 Pages 233109,1-233109,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285364000067 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J.
Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 10 Pages 933-940
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240397200006 Publication Date 2006-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 106 Issue 4 Pages 047005-047005,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000286734100010 Publication Date 2011-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:88038 Serial 1154
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 21 Pages 214501-214501,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed condensate from the equator inwards, the exact opposite of surface superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286737800007 Publication Date 2010-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the ESF “Nanoscience and Engineering in Superconductivity” program. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88039 Serial 2957
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Buckled circular monolayer graphene : a graphene nano-bowl Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 4 Pages 045002-045002,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (~0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000286142800003 Publication Date 2010-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:88043 Serial 259
Permanent link to this record
 

 
Author Verberck, B.
Title Symmetry-adapted rotator functions for molecules in cylindrical confinement Type A1 Journal article
Year 2011 Publication International journal of molecular sciences Abbreviated Journal Int J Mol Sci
Volume 12 Issue 1 Pages 317-333
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a general description of the formalism of symmetry-adapted rotator functions (SARFs) for molecules in cylindrical confinement. Molecules are considered as clusters of interaction centers (ICs), can have any symmetry, and can display different types of ICs. Cylindrical confinement can be realized by encapsulation in a carbon nanotube (CNT). The potential energy of a molecule surrounded by a CNT can be calculated by evaluating a limited number of terms of an expansion into SARFs, which offers a significant reduction of the computation time. Optimal molecular orientations can be deduced from the resulting potential energy landscape. Examples, including the case of a molecule with cubic symmetry inside a CNT, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286583400017 Publication Date 2011-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.226 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.226; 2011 IF: NA
Call Number UA @ lucian @ c:irua:88048 Serial 3402
Permanent link to this record
 

 
Author Connolly, M.R.; Bemding, S.J.; Milošević, M.V.; Clem, J.R.; Tamegai, T.
Title Continuum versus discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+\delta disks Type A1 Journal article
Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 470 Issue S:1 Pages S896-S897
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have used scanning Hall probe and local Hall magnetometry measurements to map flux profiles in superconducting Bi2Sr2CaCu2O8+δ disks whose diameters span the crossover between the bulk and mesoscopic vortex regimes. The behaviour of large disks (greater-or-equal, slanted20 μm diameter) is well described by analytic models that assume a continuous distribution of flux in the sample. Small disks (less-than-or-equals, slant10 μm diameter), on the other hand, exhibit clear signatures of the underlying discrete vortex structure as well as competition between triangular Abrikosov ordering and the formation of shell structures driven by interactions with circulating edge currents. At low fields we are able to directly observe the characteristic mesoscopic compression of vortex clusters which is linked to oscillations in the diameter of the vortex dome in increasing magnetic fields. At higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on local magnetisation curves. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviour in our system.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000286075700384 Publication Date 2009-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 1.404 Times cited Open Access
Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415
Call Number UA @ lucian @ c:irua:88069 Serial 494
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M.
Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024014-024014,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900015 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 28 Open Access
Notes ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88732 Serial 1399
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M.
Title High-temperature conductance of a two-dimensional superlattice controlled by spin-orbit interaction Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115313-115313,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Rashba-type spin-orbit interaction (SOI) controlled band structure of a two-dimensional superlattice allows for the modulation of the conductance of finite size devices by changing the strength of the SOI. We consider rectangular arrays and find that the temperature dependence of the conductance disappears for high temperatures, but the strength of the SOI still affects the conductance at these temperatures. The modulation effect can be seen even in the presence of strong dephasing, which can be important for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288242800007 Publication Date 2011-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and M045596 and by the “TAMOP-4.2.1/B-09/1/KONV-2010-0005 project: Creating the Center of Excellence at the University of Szeged” supported by the EU and the European Regional Development Fund. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88778 Serial 1466
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 9 Pages 094109-094109,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288119700001 Publication Date 2011-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88779 Serial 3928
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.; Farias, G.A.; Milošević, M.V.
Title Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 5 Pages 054516-054516,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vortex-vortex interaction potential in bulk superconductors is calculated within the Ginzburg-Landau (GL) theory and is obtained from a numerical solution of a set of two coupled nonlinear GL differential equations for the vector potential and the superconducting order parameter, where the merger of vortices into a giant vortex is allowed. Further, the interaction potentials between a vortex and a giant vortex and between a vortex and an antivortex are obtained for both type-I and type-II superconductors. Our numerical results agree asymptotically with the analytical expressions for large intervortex separations that are available in the literature. We propose empirical expressions valid over the full interaction range, which are fitted to our numerical data for different values of the GL parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287712100009 Publication Date 2011-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Discussions with J. S. Andrade Jr. and A. A. Moreira are gratefully acknowledged. This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the collaborative project CNPq-FWO-Vl, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88805 Serial 3899
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M.
Title D- shallow donor near a semiconductor-metal and a semiconductor-dielectric interface Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 11 Pages 115303,1-115313,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state energy and the extent of the wavefunction of a negatively charged donor (D − ) located near a semiconductormetal or a semiconductordielectric interface are obtained. We apply the effective mass approximation and use a variational two-electron wavefunction that takes into account the influence of all image charges that arise due to the presence of the interface, as well as the correlation between the two electrons bound to the donor. For a semiconductormetal interface, the D − binding energy is enhanced for donor positions d > 1.5aB (aB is the effective Bohr radius) due to the additional attraction of the electrons with their images. When the donor approaches the interface (i.e. d < 1.5aB) the D − binding energy drops and eventually it becomes unbound. For a semiconductordielectric (or a semiconductorvacuum) interface the D − binding energy is reduced for any donor position as compared to the bulk case and the system becomes rapidly unbound when the donor approaches the interface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000287969200013 Publication Date 2011-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP) and the Brazilian Science Foundation CNPq. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:88828 Serial 3528
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M.
Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235422-235422,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286768800007 Publication Date 2010-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88909 Serial 1717
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Kronig-Penney model on bilayer graphene : spectrum and transmission periodic in the strength of the barriers Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235408-235408,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286766900008 Publication Date 2010-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 34 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88910 Serial 1768
Permanent link to this record
 

 
Author Verberck, B.
Title Orientational properties of C70 and C80 fullerenes in carbon nanotubes Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 4 Pages 045405-045405,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present energy calculations of a C80 molecule with D5d symmetry encapsulated in a carbon nanotube. The approximation of a continuous tube rather than a rolled-up graphene sheet, justified by comparison with atomistic calculations, allows an expansion of the energy field into symmetry-adapted rotator functions. For a given tube radius R, we observe a strong dependence of the interaction energy on the molecular tilt angle and on the molecules lateral position in the tube. We observe a transition from on-axis lying orientations to tilted orientations at R1≈6.95 Å and a subsequent transition to standing orientations at R2≈7.6 Å. For tube radii larger than R3≈8.0 Å, the molecule starts to occupy off-axis positions and assumes a lying orientation. Results are compared to the case of C70 molecules, with D5h symmetry. Our findings are consistent with recent high-resolution transmission electron microscopy measurements and are relevant for the design of new materials with tunable electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286770600010 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; The author gratefully acknowledges discussions with A. V. Nikolaev and K. H. Michel. This work was financially supported by the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88911 Serial 2520
Permanent link to this record
 

 
Author Nga, T.T.N.; Peeters, F.M.
Title Influence of electron-electron interaction on the cyclotron resonance spectrum of magnetic quantum dots containing few electrons Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 7 Pages 075419-075419,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The configuration interaction method is used to obtain the magneto-optical absorption spectrum of a few-electron (Ne=1,2,,5) quantum dot containing a single magnetic ion. We find that the IR spectrum (the position, the number, and the oscillator strength of the cyclotron resonance peaks) depends on the strength of the Coulomb interaction, the number of electrons, and the position of the magnetic ion. We find that the Kohn theorem is no longer valid as a consequence of the electron-spin-magnetic-ion-spin-exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287584600011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by FWO-Vl (Flemish Science Foundation), the Brazilian science foundation CNPq, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88912 Serial 1620
Permanent link to this record
 

 
Author Verberck, B.; Tarakina, N.V.
Title Tubular fullerenes inside carbon nanotubes : optimal molecular orientation versus tube radius Type A1 Journal article
Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 80 Issue 3 Pages 355-362
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000289576200010 Publication Date 2011-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 10 Open Access
Notes ; This work was financially supported by the Research Foundation – Flanders (FWO-VI). B.V. is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-VI). ; Approved Most recent IF: 1.461; 2011 IF: 1.534
Call Number UA @ lucian @ c:irua:89286 Serial 3738
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Groeseneken, G.; Fischetti, M.V.
Title Impact of field-induced quantum confinement in tunneling field-effect devices Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 14 Pages 143503,1-143503,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Being the working principle of a tunnel field-effect transistor, band-to-band tunneling is given a rigorous quantum mechanical treatment to incorporate confinement effects, multiple electron and hole valleys, and interactions with phonons. The model reveals that the strong band bending near the gate dielectric, required to create short tunnel paths, results in quantization of the energy bands. Comparison with semiclassical models reveals a big shift in the onset of tunneling. The effective mass difference of the distinct valleys is found to reduce the subthreshold swing steepness.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289297800074 Publication Date 2011-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 76 Open Access
Notes ; The authors acknowledge Anne Verhulst for useful discussions. William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:89297 Serial 1559
Permanent link to this record
 

 
Author Liu, C.-Y.; Berdiyorov, G.R.; Milošević, M.V.
Title Vortex states in layered mesoscopic superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 10 Pages 104524-104524,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the Ginzburg-Landau theory, we study the vortex structures in three-dimensional anisotropic mesoscopic superconductors in the presence of a uniform magnetic field. Anisotropy is included through varied Tc in different layers of the sample and leads to distinct differences in the vortex states and their free energy. Several unconventional states are found, some comprising vortex clusters or exhibiting asymmetry. In a tilted magnetic field, we found second-order transitions between different vortex states, although vortex entry is generally a first-order transition in mesoscopic samples. In multilayered samples the kinked vortex strings are formed owing to the competing interactions of vortices with Meissner currents and the weak-link boundaries. The length and deformation of vortex fragments are determined solely by the inclination and strength of applied magnetic field, and this lock-in does not depend on the degree of anisotropy between the superconducting layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288998200003 Publication Date 2011-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89375 Serial 3888
Permanent link to this record
 

 
Author Li, B.; Peeters, F.M.
Title Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115448-115448,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By applying an electric field perpendicular to a semiconductor quantum ring we show that it is possible to modify the single particle wave function between quantum dot (QD)-like and ring-like. The constraints on the geometrical parameters of the quantum ring to realize such a transition are derived. With such a perpendicular electric field we are able to tune the Aharanov-Bohm (AB) effect for both the single particle and for excitons. The tunability is in both the strength of the AB effect as well as in its periodicity. We also investigate the strain induce potential inside the self-assembled quantum ring and the effect of the strain on the AB effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288855200012 Publication Date 2011-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes ; This work was supported by the EU-NoE: SANDiE, the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC, vzw collaborative project. We are grateful to Prof. M. Tadic and Dr. Fei Ding for stimulating discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89376 Serial 3744
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M.
Title Application of optical beams to electrons in graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115458-115458,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288896400013 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89377 Serial 142
Permanent link to this record
 

 
Author Katti, G.; Stucchi, M.; Velenis, D.; Sorée, B.; de Meyer, K.; Dehaene, W.
Title Temperature-dependent modeling and characterization of through-silicon via capacitance Type A1 Journal article
Year 2011 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 32 Issue 4 Pages 563-565
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A semianalytical model of the through-silicon via (TSV) capacitance for elevated operating temperatures is derived and verified with electrical measurements. The effect of temperature on the increase in TSV capacitance over different technology parameters is explored, and it is shown that higher oxide thickness reduces the impact of temperature rise on TSV capacitance, while with low doped substrates, which are instrumental for reducing the TSV capacitance, the sensitivity of TSV capacitance to temperature is large and cannot be ignored.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288664800045 Publication Date 2011-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 27 Open Access
Notes ; ; Approved Most recent IF: 3.048; 2011 IF: 2.849
Call Number UA @ lucian @ c:irua:89402 Serial 3498
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G.
Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 10 Issue 1 Pages 216-221
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000300735800021 Publication Date 2011-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211
Call Number UA @ lucian @ c:irua:89501 Serial 2772
Permanent link to this record