toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M. pdf  doi
openurl 
  Title Tailoring the Ti-C nanoprecipitate population and microstructure of titanium stabilized austenitic steels Type A1 Journal article
  Year 2018 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 507 Issue 507 Pages 177-187  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The present work reports on the microstructural evolution of a new heat of 24% cold worked austenitic DIN 1.4970 (15-15Ti) nuclear cladding steel subjected to ageing heat treatments of varying duration between 500 and 800 degrees C (by steps of 100 degrees C). The primary aim was studying the finely dispersed Ti-C nanoprecipitate population, which are thought to be beneficial for creep and swelling resistance during service. Their size distribution and number density were estimated through dark field imaging and bright field Moire imaging techniques in the transmission electron microscope. Nanoprecipitates formed at and above 600 degrees C, which is a lower temperature than previously reported. The observed nucleation, growth and coarsening behavior of the nanoprecipitates were consistent with simple diffusion arguments. The formation of nanoprecipitates coincided with significant dissociation of dislocations as evidenced by weak beam dark field imaging. Possible mechanisms, including Silcock's stacking fault growth model and Suzuki segregation, are discussed. Recrystallization observed after extended ageing at 800 degrees C caused the redissolution of nanoprecipitates. Large primary Ti(C,N) and (Ti,Mo)C precipitates that occur in the as-received material, and M23C6 precipitates that nucleate on grain boundaries at low temperatures were also characterized by a selective dissolution procedure involving filtration, X-ray diffraction and quantitative Rietveld refinement. The partitioning of key elements between the different phases was derived by combining these findings and was consistent with thermodynamic considerations and the processing history of the steel. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000438019800021 Publication Date 2018-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 1 Open Access Not_Open_Access  
  Notes ; We would like to acknowledge ENGIE, SCK.CEN, the SCK.CEN academy and the MYRRHA project for the financial support of this work. Special thanks to T. Wangle and P. Dries for their help with filtration and gravimetry. Also thanks to Dr. G. Leinders for the discussions on XRD and Rietveld refinement. Thanks to E. Charalampopoulou and A. Youssef for assisting with the dissolution experiments. ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:152382 Serial 5043  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M. pdf  url
doi  openurl
  Title Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 164 Issue Pages 90-98  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanometer sized (Ti,Mo,Cr)C (MX-type) precipitates that grew in a 24% cold worked Ti-stabilized austenitic stainless steel (grade DIN 1.4970, member of the 15-15Ti austenitic stainless steels) after heat treatment were fully characterized with transmission electron microscopy (TEM), probe corrected high angle annular dark field scanning transmission electron microscopy (HR-HAADF STEM), and atom probe tomography (APT). The precipitates shared the cube-on-cube orientation with the matrix and were facetted on {111} planes, yielding octahedral and elongated octahedral shapes. The misfit dislocations were believed to have Burgers vectors a/6<112> which was verified by geometrical phase analysis (GPA) strain mapping of a matrix-precipitate interface. The dislocations were spaced five to seven atomic

planes apart, on average slightly wider than expected for the lattice parameters of steel and TiC. Quantitative atom probe tomography analysis of the precipitates showed that precipitates were significantly enriched in Mo, Cr and V, and that they were hypostoichiometric with respect to C. These findings were consistent with a reduced lattice parameter. The precipitates were found primarily on Shockley

partial dislocations originating from the original perfect dislocation network. These novel findings could contribute to the understanding of how TiC nanoprecipitates interact with point defects and matrix dislocations. This is essential for the application of these Ti-stabilized steels in high temperature environments or fast spectrum nuclear fission reactors.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902800008 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 2 Open Access Not_Open_Access: Available from 12.10.2020  
  Notes This work was supported by ENGIE [contract number 2015-AC- 007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program in development at SCKCEN, Belgium. Special thanks to Dr. H. Mezerji and Dr. T. Altantzis for the work on the FEI Titan microscope.We also want to thank Ms. J. Burns for the help on the FIB and Dr. Y. Wu at CAES for conducting the APT measurements. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:154873UA @ admin @ c:irua:154873 Serial 5060  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Schryvers, D. pdf  doi
openurl 
  Title ALPHABETA: a dedicated open-source tool for calculating TEM stage tilt angles Type A1 Journal article
  Year 2019 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 273 Issue 3 Pages 189-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458426100004 Publication Date 2018-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access  
  Notes ENGIE Ph.D. sponsorship, 2015-AC-007 – BSUEZ6900 ; Approved Most recent IF: 1.692  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157474 Serial 5163  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Cautaerts, N.; Van der Donck, T.; Schryvers, D.; Lambrinou, K.; Delville, R. pdf  doi
openurl 
  Title Orientation relationship of the austenite-to-ferrite transformation in austenitic stainless steels due to dissolution corrosion in contact with liquid Pb-Bi eutectic Type A1 Journal article
  Year 2019 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 167 Issue 167 Pages 66-70  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The orientation relationship of an austenite-to-ferrite phase transformation in 316L stainless steels induced by the loss of austenite stabilizers resulting from the steel dissolution corrosion in liquid Pb-Bi eutectic was studied by means of electron backscatter diffraction. The misorientations at the austenite/ferrite interface were compared to the prevailing orientation relationship models in steels. The Pitsch orientation relationship model was found to be predominant, which is unusual for austenite-to-ferrite bulk transformations in steels. The nature of this particular transformation, which involves loss of steel alloying elements and the presence of an interfacial liquid metal layer, is discussed to explain this finding. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468720000014 Publication Date 2019-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank J. Joris (SCK center dot CEN) for technical support during corrosion testing, J. Lim (SCK center dot CEN) for the manufacture and calibration of the oxygen sensors used in this work and W. Van Renterghem (SCK center dot CEN) for his valuable help with the EBSD measurements. The steel suppliers were: Industeel, ArcelorMittal Group, for the 316L-SA plate, and Panchmahal Steel Ltd., India, for the 316L-CWrod. The authors gratefully acknowledge the financial support provided within the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). ; Approved Most recent IF: 3.747  
  Call Number UA @ admin @ c:irua:160228 Serial 5257  
Permanent link to this record
 

 
Author Cautaerts, N. openurl 
  Title Nanoscale study of ageing and irradiation induced precipitates in the DIN 1.4970 alloy Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 306 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161997 Serial 5392  
Permanent link to this record
 

 
Author Cautaerts, N.; Lamm, S.; Stergar, E.; Pakarinen, J.; Yang, Y.; Hofer, C.; Schnitzer, R.; Felfer, P.; Verwerft, M.; Delville, R.; Schryvers, D. doi  openurl
  Title Atom probe tomography data collection from DIN 1.4970 (15-15Ti) austenitic stainless steel irradiated with Fe ions Type Dataset
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset comprises a large collection of atom probe tomography datasets collected from DIN 1.4970 alloy that was irradiated with Fe ions at different conditions. The DIN 1.4970 alloy is an austenitic stainless steel with 15 wt% Cr, 15 wt% Ni, a small addition of Ti. The full composition and characterization of our material can be found published elsewhere [1,2]. Some of our material was subjected to ageing heat treatments at different temperatures for different times. Small samples of our original material and aged material was irradiated at the Michigan Ion Beam Laboratory in 2017 with 4.5 MeV Fe ions up to 40 dpa at an average dose rate of 2×10−4 dpa/s. This was done at three different temperatures: 300, 450, and 600 ºC. Atom probe samples were made of the irradiated layers (approximately 1.5 micron deep) with focused ion beam and mounted on Microtip coupons. APT measurements took place on three CAMECA LEAP-HR systems located at CAES in Idaho Falls, USA (files beginning with R33), at Montanuniversität Leoben in Leoben, Austria (R21) and at Friedrich–Alexander University in Erlangen, Germany (R56).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169127 Serial 6454  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Pakarinen, J.; Verwerft, M.; Yang, Y.; Hofer, C.; Schnitzer, R.; Lamm, S.; Felfer, P.; Schryvers, D. pdf  url
doi  openurl
  Title The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: A nanoscale study Type A1 Journal article
  Year 2020 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 197 Issue Pages 184-197  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work encompasses an in-depth transmission electron microscopy and atom probe tomography study of Ti-stabilized austenitic steel irradiated with Fe-ions. The focus is on radiation induced segregation and precipitation, and in particular on how Ti and TiC affect these processes. A 15-15Ti steel (grade: DIN 1.4970) in two thermo-mechanical states (cold-worked and aged) was irradiated at different temperatures up to a dose of 40 dpa. At low irradiation temperatures, the cold-worked and aged materials evolved to a similar microstructure dominated by small Si and Ni clusters, corresponding to segregation to small point defect clusters. TiC precipitates, initially present in the aged material, were found to be unstable under these irradiation conditions. Elevated irradiation temperatures resulted in the nucleation of nanometer sized Cr enriched TiC precipitates surrounded by Si and Ni enriched shells. In addition, nanometer sized Ti- and Mn-enriched G-phase (M6Ni16Si7) precipitates formed, often attached to TiC precipitates. Post irradiation, larger number densities of TiC were observed in the cold-worked material compared to the aged material. This was correlated with a lower volume fraction of G-phase. The findings suggest that at elevated irradiation temperatures, the precipitate-matrix interface is an important point defect sink and contributes to the improved radiation resistance of this material. The study is a first of its kind on stabilized steel and demonstrates the significance of the small Ti addition to the evolution of the microstructure under irradiation. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564767000001 Publication Date 2020-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by ENGIE [contract number 2015-AC-007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program at SCK-CEN, Belgium. Funding of the Austrian BMK (846933) in the framework of the program “Production of the future” and the “BMK Professorship for Industry” is gratefully acknowledged. We want to thank the staffat MIBL for assisting with the ion irradiations as well as the staffat CAES for assisting with FIB work and conducting APT measurements. ; Approved Most recent IF: 9.4; 2020 IF: 5.301  
  Call Number UA @ admin @ c:irua:171956 Serial 6626  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: