toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial 7190  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 145 Issue Pages 116447  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723747000009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:183268 Serial 7460  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K. pdf  url
doi  openurl
  Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 44 Pages 14851-14858  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000718171600037 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:182347 Serial 8038  
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Campos, R.; De Wael, K. pdf  url
doi  openurl
  Title Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 142 Issue Pages 116311  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers are promising biorecognition elements with a wide applicability from therapeutics to bio-sensing. However, to successfully use these biomolecules, a complete characterisation of their bindingperformance in the presence of the target is crucial. Several multi-analytical approaches have been re-ported including techniques to describe kinetic and thermodynamic aspects of the aptamer-targetinteraction, and techniques which allow an in-depth understanding of the aptamer-target structures.Recent literature shows the need of a critical data interpretation, a combination of characterisationtechniques and suggests the key role of the characterisation protocol design. Indeed, thefinal applicationof the aptamer should be considered before choosing the characterisation method. All the limitations andcapabilities of the analytical tools in use for aptamer characterisation should be taken into account. Here,we present a critical overview of the current methods and multi-analytical approaches to study aptamer-target binding, aiming to provide researchers with guidelines for the design of characterisation protocols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682179000010 Publication Date 2021-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:179407 Serial 8203  
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 40 Pages 13606-13614  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708550500025 Publication Date 2021-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:181795 Serial 8290  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
  Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal J Electroanal Chem  
  Volume 902 Issue Pages 115770  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714415500006 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:184018 Serial 8745  
Permanent link to this record
 

 
Author Ma, X.; Pavlidis, G.; Dillon, E.; Beltran, V.; Schwartz, J.J.; Thoury, M.; Borondics, F.; Sandt, C.; Kjoller, K.; Berrie, B.H.; Centrone, A. pdf  url
doi  openurl
  Title Micro to nano : multiscale IR analyses reveal zinc soap heterogeneity in a 19th-century painting by Corot Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal  
  Volume 94 Issue 7 Pages 3103-3110  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (mu-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with approximate to 500 and approximate to 10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (mu-FTIR approximate to 10(2) mu m(3), O-PTIR approximate to 10(-1) mu m(3), PTIR approximate to 10(-5) mu m(3)). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often << 0.1 mu m(3)) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (approximate to 1530-1558 cm(-1)) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at approximate to 1596 cm(-1). We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766206700011 Publication Date 2022-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187380 Serial 8897  
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. pdf  url
doi  openurl
  Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
  Year 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 249 Issue Pages 123695-123699  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826441800002 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188955 Serial 8955  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: