toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author (up) Lindeboom, R.E.F.; Clauwaert, P.; Alloul, A.; Coessens, W.; Christiaens, M.; Vanoppen, M.; Rabaey, K.; Verliefde, A.R.D.; Vlaeminck, S.E. pdf  openurl
  Title Water and nutrient recovery from combined urine and grey water treatment in Space Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151143 Serial 8747  
Permanent link to this record
 

 
Author (up) Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author (up) Lindeboom, R.E.F.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Van Hoey, O.; Roume, H.; Morozova, J.; Udert, K.M.; Sas, B.; Paille, C.; Lasseur, C.; Ilyin, V.; Clauwaert, P.; Leys, N.; Vlaeminck, S.E. url  doi
openurl 
  Title Nitrogen cycle microorganisms can be reactivated after Space exposure Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal  
  Volume 8 Issue Pages 13783  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10(-3)-10(-4) g (gravitational constant) and 687 +/- 170 mu Gy (Gray) d(-1) (20 +/- 4 degrees C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 degrees C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444501200063 Publication Date 2018-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153641 Serial 8309  
Permanent link to this record
 

 
Author (up) Liu, X.; Van Winckel, T.; Kjellerup, B.V.; Takacs, I.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Pinpointing bioflocculation limitations for enhanced carbon management in high-rate activated sludge Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEF Nutrient Symposium 2017, 12 - 14 Jun  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151118 Serial 8384  
Permanent link to this record
 

 
Author (up) Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.; Vlaeminck, S.E. pdf  openurl
  Title The age of wastewater mining : selection for sludge with a maximum capture potential for organics in a high-rate contact stabilization system Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151144 Serial 7428  
Permanent link to this record
 

 
Author (up) Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E. doi  openurl
  Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal  
  Volume 50 Issue 17 Pages 9781-9790  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382805800097 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138270 Serial 8176  
Permanent link to this record
 

 
Author (up) Meerburg, F.A.; Rahman, A.; Van Winckel, T.; Pauwels, K.; De Clippeleir, H.; Al-Omari, A.; Murthy, S.; Boon, N.; Vlaeminck, S.E. openurl 
  Title Fast and furious : optimization and validation of high-rate contact stabilization (HiCS) for recovery of organics from sewage Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151132 Serial 7958  
Permanent link to this record
 

 
Author (up) Meerburg, F.A.; Vlaeminck, S.E.; Roume, H.; Seuntjens, D.; Pieper, D.H.; Jauregui, R.; Vilchez-Vargas, R.; Boon, N. pdf  url
doi  openurl
  Title High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 100 Issue Pages 137-145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low-rate communities. We investigated the high-rate and low-rate communities in a sewage treatment plant in relation to environmental and operational variables over a period of ten months. We demonstrated that (1) high-rate and low-rate communities are distinctly different in terms of richness, evenness and composition, (2) high-rate community dynamics are more variable and less shaped by deterministic factors compared to low-rate communities, (3) sub-communities of continuously core and transitional members are more shaped by deterministic factors than the continuously rare members, both in high-rate and low-rate communities, and (4) high-rate community members showed a co-occurrence pattern similar to that of low-rate community members, but were less likely to be correlated to environmental and operational variables. These findings provide a basis for further optimization of high-rate systems, in order to facilitate resource recovery from wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378448800014 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139914 Serial 8035  
Permanent link to this record
 

 
Author (up) Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S. pdf  openurl
  Title Overcoming the challenges for mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 13th IWA Leading-Edge Conference on Wate  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151137 Serial 8351  
Permanent link to this record
 

 
Author (up) Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S. openurl 
  Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151136 Serial 8679  
Permanent link to this record
 

 
Author (up) Mozo, I.; Lacoste, L.; aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Graveleau, L.; Barillon, B.; Martin Ruel, S. openurl 
  Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - World Cities Summit, Singapore Internati  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151124 Serial 8678  
Permanent link to this record
 

 
Author (up) Mozo, I.; Lacoste, L.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Bessiere, Y.; Hernandez-Raquet, G.; Caligaris, M.; Barillon, B.; Martin Ruel, S. openurl 
  Title Impact of temperature on mainstream deammonification performance and microbial community Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA World Water Congress & Exhibition (W  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151121 Serial 8065  
Permanent link to this record
 

 
Author (up) Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
  Year 2018 Publication Water science and technology Abbreviated Journal  
  Volume 78 Issue 1 Pages 183-194  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445517100020 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152908 Serial 8381  
Permanent link to this record
 

 
Author (up) Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Solubilization of struvite as a sustainable nutrient source for single cell protein production Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 179-184  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract By 2050, the world population will have considerably expanded and the life standard of many will increase, yielding a 50% higher demand in protein (FAO, 2011), and even increases of 82 and 102% for diary and meat products, respectively (Boland et al., 2013). To provide in this increasing demand we are highly dependent on our classical fertilizer to food chain which has a high environmental impact and lacks efficiency. Nutrient losses cause eutrophication and biodiversity loss and the input of resources is already beyond the boundaries of environmental sustainability (Steffen et al., 2015). Phosphate fertilizers are made from phosphate rock (apatite), of which the reserves are predicted to be depleted within 50 100 years if we continue business as usual (Cordell et al., 2009). Next to problems related to the unbalanced geopolitical distribution with dominance in China and Morocco, the decreasing quality of the remaining apatite will result in an increasing environmental impact of fertilizer production. Finally, our traditional food production model requires 30% of all ice-free land, 70% of all available freshwater and produces up to one third of the global greenhouse gas emission, of which 80 to 86% is linked to agricultural production (Vermeulen et al., 2012). To ensure food security, nutrient recovery from waste streams can provide an important strategy. In this context, struvite ( ) crystallisation may be applied to recover phosphorus, along with some nitrogen. Reusing these nutrients as agricultural fertilizer on the field will lead to considerable losses to the environment. In contrast, their use to cultivate micro-organisms, e.g. for single cell protein (SCP), offers to potential of a near perfect conversion efficiency (Moed et al., 2015). At this moment, microalgae represent the most developed type of SCP, and are a promising protein source due to their growth rate, high nutritional quality and extremely high nutrient usage efficiency (Becker, 2007). Reliable solubilisation data are essential to design a technological strategy for struvite dosage in bioreactors for SCP production. The effect on solubility and solubilisation rate of relevant physicochemical parameters was studied experimentally in aqueous solutions. Because pH and temperature greatly affect solubilisation kinetics they were set at a constant value of 7 and 20°C respectively. The effect of some parameters on struvite solubility was already studied (Bhuiyan et al., 2007; Ariyanto et al., 2014; Roncal-Herrero and Oelkers, 2011), but solubilisation rates were not yet considered and pH was not controlled at a constant value. The chemical parameters considered in this study include the concentration of different common ions ( and ), foreign ions ( and the chelating agent ethylenediaminetetraacetic acid, EDTA) present in micro-algal cultivation media as well as ionic strength (as set by NaCl). The main physical parameter included was contact surface, through variation in initial particle size and as well as in struvite dosage concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151150 Serial 8550  
Permanent link to this record
 

 
Author (up) Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Struvite solubilisation rates enable direct addition To single cell protein bioreactors Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 10 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151129 Serial 8590  
Permanent link to this record
 

 
Author (up) Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
  Year 2023 Publication The science of the total environment Abbreviated Journal  
  Volume 866 Issue Pages 161172-161179  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000922040000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8; 2023 IF: 4.9  
  Call Number UA @ admin @ c:irua:192943 Serial 7297  
Permanent link to this record
 

 
Author (up) Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author (up) Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. url  doi
openurl 
  Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
  Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 756 Issue Pages 143726-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603487500029 Publication Date 2020-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:173944 Serial 8638  
Permanent link to this record
 

 
Author (up) Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author (up) Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. pdf  url
doi  openurl
  Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
  Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res  
  Volume 94 Issue 8 Pages e10772-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000840360100001 Publication Date 2022-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1061-4303; 1554-7531 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:189409 Serial 7174  
Permanent link to this record
 

 
Author (up) Ngo, N.; Liu, X.; Van Winckel, T.; Massoudieh, A.; Kjellerup, B.V.; Takács, I.; Wett, B.; Mancell-Egala, M.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Experimental metrics to predict the flocculent settling coefficient in a 1D settler model Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151111 Serial 7948  
Permanent link to this record
 

 
Author (up) Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author (up) Peng, L.; Carvajal-Arroyo, J.M.; Seuntjens, D.; Colica, G.; Pintucci, C.; Vlaeminck, S.E. openurl 
  Title Mitigation of nitrous oxide emission from nitritation/denitritation process Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - WEF Nutrient Symposium 2017, 12 - 14 Jun  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151119 Serial 8255  
Permanent link to this record
 

 
Author (up) Peng, L.; Carvajal-Arroyo, J.M.; Seuntjens, D.; Prat, D.; Colica, G.; Pintucci, C.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate Type A1 Journal article
  Year 2017 Publication Water research Abbreviated Journal  
  Volume 127 Issue Pages 1-10  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N2O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (CODrem/N-rem). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N2O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O-2/L; CODrem/N-rem of 2.8) with similar to 68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (similar to 2.2 mg O-2/L) lowered the aerobic N2O emission and weakened the dependency on nitrite concentration, suggesting a shift in N2O production pathway. The most effective N2O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to similar to 0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low CODrem/N-rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. (c) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418219000001 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148521 Serial 8548  
Permanent link to this record
 

 
Author (up) Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10 Type A1 Journal article
  Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 822 Issue Pages 153489  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57–1.08 g biomass g−1 CODremoved and 0.48–0.71 d−1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2–1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g−1 CODremoved and 0.71 d−1) and the highest biomass quality (protein content of 609 mg g−1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g−1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L−1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g−1 DCW d−1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766801800010 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:185706 Serial 7202  
Permanent link to this record
 

 
Author (up) Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author (up) Pintucci, C.; Carballa, M.; Varga, S.; Sarli, J.; Peng, L.; Bousek, J.; Pedizzi, C.; Ruscalleda, M.; Tarragó, E.; Prat, D.; Colica, G.; Picavet, M.; Colsen, J.; Benito, O.; Balaguer, M.; Puig, S.; Lema, J.M.; Colprim, J.; Fuchs, W.; Vlaeminck, S.E. url  doi
openurl 
  Title The ManureEcoMine pilot installation : advanced integration of technologies for the management of organics and nutrients in livestock waste Type A1 Journal article
  Year 2017 Publication Water science and technology Abbreviated Journal  
  Volume 75 Issue 6 Pages 1281-1293  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m−3 d−1, with a CH4 production of 1.4 Nm3 m−3 d−1. The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to 4 times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397590800003 Publication Date 2016-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139911 Serial 8200  
Permanent link to this record
 

 
Author (up) Pintucci, C.; Peng, L.; Prat, D.; Colica, G.; Merijn, P.; Colsen, J.; Varga, S.; Sarli, J.; Benito, O.; Vlaeminck, S.E. openurl 
  Title The ManureEcoMine Pilot Plant : towards advanced nutrient management in livestock waste treatment Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151130 Serial 8201  
Permanent link to this record
 

 
Author (up) Saha, S.; Badhe, N.; Seuntjens, D.; Vlaeminck, S.E.; Biswas, R.; Nandy, T. doi  openurl
  Title Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India Type A1 Journal article
  Year 2015 Publication Water science and technology Abbreviated Journal  
  Volume 72 Issue 4 Pages 651-657  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The present study evaluates effectiveness of up-flow anaerobic sludge blanket (UASB) reactor followed by two post-anaerobic treatment options, namely free-surface, up-flow constructed wetland (FUP-CW) and oxygen-limited anaerobic nitrification/denitrification (OLAND) processes in treating sewage from the peri-urban areas in India receiving illegal industrial infiltrations. The UASB studies yielded robust results towards fluctuating strength of sewage and consistently removed 87-98% chemical oxygen demand (COD) at a hydraulic retention time of 1.5-2 d. The FUP-CW removed 68.5 +/- 13% COD, 68 +/- 3% NH4+-N, 38 +/- 5% PO43--P, 97.6 +/- 5% suspended particles and 97 +/- 13% fecal coliforms. Nutrient removal was found to be limiting in FUP-CW, especially in winter. Nitrogen removal in the OLAND process were 100 times higher than the FUP-CW process. Results show that UASB followed by FUP-CW can be an excellent, decentralized sewage treatment option, except during winter when nutrient removal is limited in FUP-CW. Hence, the study proposes bio-augmentation of FUP-CW with OLAND biomass for overall improvement in the performance of UASB followed by FUP-CW process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359387200019 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127775 Serial 7840  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: