toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. pdf  doi
openurl 
  Title Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs Type A1 Journal article
  Year 2020 Publication Acs Sensors Abbreviated Journal Acs Sensors  
  Volume 5 Issue 9 Pages 2679-2700  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and

commercialization efforts.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573560800003 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.9 Times cited Open Access  
  Notes Horizon 2020 Framework Programme, 833787 ; Center of Wearable Sensors, University of California San Diego; Approved Most recent IF: 8.9; 2020 IF: NA  
  Call Number AXES @ axes @c:irua:170894 Serial 6436  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 197 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719366400003 Publication Date 2021-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:183086 Serial 8957  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
  Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 378 Issue Pages 133159-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904590500008 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192381 Serial 8824  
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Tunca, S.; Donnelly, R.F.; De Wael, K. pdf  doi
openurl 
  Title Wearable microneedle-based array patches for continuous electrochemical monitoring and drug delivery : toward a closed-loop system for methotrexate treatment Type A1 Journal article
  Year 2023 Publication ACS sensors Abbreviated Journal  
  Volume Issue Pages acssensors.3c01381-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode’s surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 μM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001109702900001 Publication Date 2023-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.9 Times cited Open Access Not_Open_Access: Available from 19.04.2024  
  Notes Approved Most recent IF: 8.9; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200074 Serial 8956  
Permanent link to this record
 

 
Author Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C. url  doi
openurl 
  Title Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches Type A1 Journal article
  Year 2020 Publication Frontiers In Chemistry Abbreviated Journal Front Chem  
  Volume 8 Issue Pages 561638  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000589960100001 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access  
  Notes Approved Most recent IF: 5.5; 2020 IF: 3.994  
  Call Number UA @ admin @ c:irua:174278 Serial 8639  
Permanent link to this record
 

 
Author Pilehvar, S.; Dierckx, T.; Blust, R.; Breugelmans, T.; De Wael, K. url  doi
openurl 
  Title An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol Type A1 Journal article
  Year 2014 Publication Sensors Abbreviated Journal Sensors-Basel  
  Volume 14 Issue 7 Pages 12059-12069  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) We report on the aptadetection of chloramphenicol (CAP) using electrochemical impedance spectroscopy. The detection principle is based on the changes of the interfacial properties of the electrode after the interaction of the ssDNA aptamers with the target molecules. The electrode surface is partially blocked due to the formation of the aptamer-CAP complex, resulting in an increase of the interfacial electron-transfer resistance of the redox probe detected by electrochemical impedance spectroscopy or cyclic voltammetry. We observed that the ratio of polarization resistance had a linear relationship with the concentrations of CAP in the range of 1.76127 nM, and a detection limit of 1.76 nM was obtained. The covalent binding of CAP-aptamer on the electrode surface combined with the unique properties of aptamers and impedimetric transduction leads to the development of a stable and sensitive electrochemical aptasensor for CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340035700041 Publication Date 2014-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.677 Times cited 34 Open Access  
  Notes ; We are thankful to UA-DOCPRO and UA-BOFACA for financial support. ; Approved Most recent IF: 2.677; 2014 IF: 2.245  
  Call Number UA @ admin @ c:irua:117845 Serial 5592  
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K. url  doi
openurl 
  Title Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371021900094 Publication Date 2016-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 37 Open Access  
  Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:130404 Serial 5591  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
  Year 2020 Publication ChemPhotoChem Abbreviated Journal  
  Volume 4 Issue 4 Pages 300-306  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520100400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:165912 Serial 5771  
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K. pdf  doi
openurl 
  Title Polycyclodextrin and carbon nanotubes as composite for tyrosinase immobilization and its superior electrocatalytic activity towards butylparaben an endocrine disruptor Type A1 Journal article
  Year 2015 Publication Journal of nanoscience and nanotechnology Abbreviated Journal  
  Volume 15 Issue 5 Pages 3365-3372  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) We developed a protocol for the immobilization of tyrosinase (Tyr) on the composite of polycyclodextrin polymer (CDP) and carbon nanotubes for the detection of an endocrine disruptor, i.e., butylparaben (BP). The formation of the CDP polymer was characterized by UV-Vis spectrophotometry. The conducting film of cross-linked CDP and carbon nanotubes, displays excellent matrix capabilities for Tyr immobilization. The host-guest chemical reaction ability of CD and the ππ stacking interaction assure the bioactivity of Tyr towards butylparaben. The developed biosensor was characterized electrochemically by electrochemical impedance spectroscopy. The enzyme-substrate kinetic parameters such as the apparent Michaelis-Menten constant (K M app) was measured under saturated substrate concentration. The determination of butylparaben was carried out by using square wave voltammetry over the concentration range of 2.1 to 35.4 μM with a detection limit of 0.1 μM. The fabricated biosensor was successfully applied in real-life cosmetic samples with good recovery ranging from 98.5 to 102.8%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347435200007 Publication Date 2014-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:119550 Serial 5776  
Permanent link to this record
 

 
Author Castanheiro, A.; Samson, R.; De Wael, K. pdf  url
doi  openurl
  Title Magnetic- and particle-based techniques to investigate metal deposition on urban green Type A1 Journal article
  Year 2016 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 571 Issue Pages 594-602  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Urban green works as a recorder of atmospheric PM. This paper reports on the utility of combining magnetic- and particle-based techniques to investigate PM leaf deposition as a bio-indicator of metal pollution. Ivy (Hedera helix) leaves were collected from five different land use classes, i.e. forest, rural, roadside, industrial, train. Leaf magnetic measurements were done in terms of saturation isothermal remanent magnetization (leaf SIRM), while ca. 40,000 leaf-deposited particles were analyzed through SEM/EDX to estimate the elemental composition. The influence of the different land use classes was registered both magnetically and in terms of metal content. Leaf area-normalized SIRM values ranged from 19.9 to 444.0 μA, in the following order forest < rural < roadside < industrial < train. Leaf SIRM showed to be significantly correlated (p < 0.01) with the content in Fe, Zn, and Pb, followed by Mn and Cd (p < 0.05), while no significant correlation was found with the metals Cr and Cu. Although presenting a similar metal content, roadside and train were magnetically very distinct. By exhibiting a very high content in Pb, and with an Fe content being comparable to the one observed at the forest and rural land uses, the industrial leaf-deposited particles showed to be mainly due to industrial activity. While SEM/EDX is a suitable approach for detailed particle analysis, leaf SIRM of ivy can be used as a rapid discriminatory tool for metal pollution. Their complementary use delivers further knowledge on land use classes reflecting different PM conditions and/or sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383930400059 Publication Date 2016-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited 17 Open Access  
  Notes ; This research was supported by a PhD grant of the Research Foundation Flanders (FWO). The authors thank W. Dorrine for his help and supervision on operating the SEM, and G. Nuyts and K Wuyts for their valuable comments on data treatment The authors also acknowledge the three anonymous reviewers for their constructive comments, which helped to improve the manuscript. ; Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:134845 Serial 5703  
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K. doi  openurl
  Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
  Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 46 Issue 21 Pages 12162-12169  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract (down) Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000310665000082 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 5 Open Access  
  Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257  
  Call Number UA @ lucian @ c:irua:101411 Serial 2557  
Permanent link to this record
 

 
Author Ayalew, E.; Janssens, K.; De Wael, K. url  doi
openurl 
  Title Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 3 Pages 1564-1569  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art in order to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment, that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. To demonstrate its photoactivity, an electrochemical setup with minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor which is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of the degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experi-mentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4 modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded since the PbO reacts further to form hydrocerussite. Therefore the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369471100014 Publication Date 2015-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes ; The authors acknowledge Sanne Aerts from the Laboratory of Adsorption and Catalysis (LADCA) of the University of Antwerp for her help with the UV-vis-DR. Financial support from the SOLARPAINT BOF-GOA project (University of Antwerp Research Council) is acknowledged. The authors are also indebted to F. Vanmeert for performing the XRD measurements. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:129963 Serial 5888  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K. url  doi
openurl 
  Title Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
  Year 2022 Publication Sensors & Diagnostics Abbreviated Journal  
  Volume 1 Issue 1 Pages 793-802  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188521 Serial 8856  
Permanent link to this record
 

 
Author Detamornrat, U.; Parrilla, M.; Domínguez-Robles, J.; Anjani, Q.K.; Larrañeta, E.; De Wael, K.; Donnelly, R.F. url  doi
openurl 
  Title Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system Type A1 Journal article
  Year 2023 Publication Lab on a chip Abbreviated Journal  
  Volume 23 Issue 9 Pages 2304-2315  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm(-2) current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000971513000001 Publication Date 2023-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1473-0197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.1; 2023 IF: 6.045  
  Call Number UA @ admin @ c:irua:195781 Serial 8946  
Permanent link to this record
 

 
Author Eliaerts, J.; Dardenne, P.; Meert, N.; Van Durme, F.; Samyn, N.; Janssens, K.; De Wael, K. url  doi
openurl 
  Title Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics Type A1 Journal article
  Year 2017 Publication Drug testing and analysis Abbreviated Journal Drug Test Anal  
  Volume 9 Issue 10 Pages 1480-1489  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Traditionally, fast screening for the presence of cocaine in unknown powders is performed by means of colour tests. The major drawbacks of these tests are subjective colour evaluation depending on the operator (50 shades of blue) and a lack of selectivity. An alternative fast screening technique is Fourier Transform InfraRed (FTIR) spectrometry. This technique provides spectra that are difficult to interpret without specialized expertise and showing a lack of sensitivity for the detection of cocaine in mixtures. To overcome these limitations, a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling was combined with a multivariate technique, called Support Vector Machines (SVM). Representative street drug powders (n = 482), seized during the period January 2013 to July 2015, and reference powders (n = 33) were used to build and validate a classification model (n = 515) and a quantification model (n = 378). Both models were compared with the conventional chromatographic techniques. The SVM classification model showed a high sensitivity, specificity and efficiency (99%). The SVM quantification model determined cocaine content with a root mean squared error of prediction (RMSEP) of 6% calculated over a wide working range from 4 to 99 w%. In conclusion, the developed models resulted in a clear output (cocaine detected or cocaine not detected) and a reliable estimation of the cocaine content in a wide variety of mixtures. The ATR-FTIR technique combined with SVM is a straightforward, user-friendly and fast approach for routine classification and quantification of cocaine in seized powders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413685200001 Publication Date 2016-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:139483 Serial 5799  
Permanent link to this record
 

 
Author Sathiyamoorthy, S.; Girijakumari, G.; Kannan, P.; Venugopal, K.; Thiruvottriyur Shanmugam, S.; Veluswamy, P.; De Wael, K.; Ikeda, H. pdf  url
doi  openurl
  Title Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 449 Issue 449 Pages 507-513  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) To produce effective thermoelectric nanocomposites, carbon nanofibers (CNF) incorporated polyurethane (PU) foams with nanocomposites are prepared via in-situ polymerization method to create a synergy that would produce a high thermopower. The formation mechanism of foams, the reaction kinetics, and the physical properties such as density and water absorption studied before and after CNF incorporation. The microscopy images showed a uniform dispersion of CNF in the PU matrix of the prepared foams. Spectroscopic studies such as X-ray photoelectron and laser Raman spectroscopy suggested the existence of a tight intermolecular binding interaction between the carbon nanofibers and the PU matrix in the prepared composite foams. It found that the thermopower is directly dependent on the concentration of carbon nanofiber since, with rising concentration of 1%3%, the coefficient values increased from 1.2 μV/K to 11.9 μV/K respectively, a value higher than that of earlier report. This unique nanocomposite offers a new opportunity to recycle waste heat in portable/wearable electronics and other applications, which will broaden the development of low weight and mechanical flexibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438025400064 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:151287 Serial 5868  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 283 Issue 283 Pages 343-348  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455854000043 Publication Date 2018-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 1 Open Access  
  Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:155665 Serial 5605  
Permanent link to this record
 

 
Author Krupińska, B.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Air quality monitoring in a museum for preventive conservation : results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium Type A1 Journal article
  Year 2013 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 110 Issue Pages 350-360  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Through different research projects on air quality in museums, researcher and conservators try identifying various risks of air pollution on materials. The conclusions may be later translated into specific actions for a maximum preservation of the museum collections, a process known as preventive conservation. Air pollution is a particular problem in historical buildings such as museums, because they were not originally built to exhibit and protect art objects in a sustainable way. This article reports on the data and results that were obtained during 10 sampling campaigns, in the period between November 2008 and February 2012 in a museum in Antwerp (Belgium), i.e. Plantin-Moretus Museum/Print Room. Different pollutants were measured inside and outside the museum such as inorganic gases, particulate matter and black carbon. The report specifically addresses environmental factors that may be responsible for damage to the collections present in museums. Thanks to the knowledge about the current situation in the museum, accurate solutions regarding preventive conservation, in general, are suggested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326851200051 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 46 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. VMM and Dr. Edward Roekens is acknowledged for sharing the black carbon measurements. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2013 IF: 3.583  
  Call Number UA @ admin @ c:irua:108402 Serial 5460  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
  Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal J Electroanal Chem  
  Volume 902 Issue Pages 115770  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714415500006 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:184018 Serial 8745  
Permanent link to this record
 

 
Author Ehirim, T.J.; Ozoemena, O.C.; Mwonga, P.V.; Haruna, A.B.; Mofokeng, T.P.; De Wael, K.; Ozoemena, K.I. url  doi
openurl 
  Title Onion-like carbons provide a favorable electrocatalytic platform for the sensitive detection of tramadol drug Type A1 Journal article
  Year 2022 Publication ACS Omega Abbreviated Journal  
  Volume 7 Issue 51 Pages 47892-47905  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (Ead = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (Ead = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of similar to 55 to 392 mu M, with high sensitivity (0.0315 mu A/mu M) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 mu M, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903165200001 Publication Date 2022-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193391 Serial 8908  
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K. pdf  url
doi  openurl
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.  
  Volume Issue Pages anse.202000012  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2629-2742 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA  
  Call Number AXES @ axes @c:irua:173031 Serial 6427  
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
  Year 2022 Publication Drug testing and analysis Abbreviated Journal  
  Volume 14 Issue 8 Pages 1471-1481  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790965700001 Publication Date 2022-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187767 Serial 8921  
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; Potgieter-Vermaak, S.; De Wael, K.; Lugwisha, E.; van Espen, P.; Van Grieken, R. doi  openurl
  Title Concentration profiles of metal contaminants in fluvial sediments of a rural-urban drainage basin in Tanzania Type A1 Journal article
  Year 2014 Publication International journal of environmental analytical chemistry Abbreviated Journal Int J Environ An Ch  
  Volume 94 Issue 1 Pages 77-98  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This study investigated concentration profiles of trace, rare earth and platinum group metals in fluvial sediments from the Pangani river basin (43,650 km2), one of the largest river basins in Tanzania, to assess its environmental quality. Sediment samples were collected in two distinct seasons from 12 representative sites of diverse land-use practices and characterised by ICP-MS after optimised microwave digestion. Ecological risks were assessed by evaluation of pollution index and comparison with legislated sediment quality guidelines (SQG). The results revealed contamination by some trace metals (e.g. Pb, V, Cu, Cr, Ni, Cd, As, Co, Mn and Zn) in concentrations ranging from 0.7 to 2940 mg kg−1, and four rare earth elements (Y, Ce, Nd, Yb) in concentrations ranging from 0.9 (Yb) to 500 mg kg−1 dry weight (Ce), which significantly exceeded the estimated background values at some stations. Palladium was the only platinum group element that was detected in quantifiable concentrations (0.33.5 mg kg−1). Concentrations of some trace metals exceeded the SQGs at some localised areas. Principal component analysis and multivariate correlations indicated geochemical characteristics of the area as the major control of metal concentrations and spatial variability. Organic matter and clay contents also played a significant role in metal distributions. Assessment of land-use practices upstream of the sampling locations was used to trace potential anthropogenic sources of metal enrichments, where highest levels were found in areas close to urban centres and agricultural activities. The study provides baseline data for future monitoring programs, and highlights the need for more comprehensive analysis involving a wider spatio-temporal scale and ecotoxicological risk assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329774500007 Publication Date 2013-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.208 Times cited 5 Open Access  
  Notes ; The participants of this research gratefully acknowledge the financial support of the Belgian Development Agency (BTC). The contribution of the Pangani Basin Water Board (PBWB), especially Ms Arafa Maggidi in provision of valuable information and assistance with the sampling campaigns is greatly appreciated. We sincerely acknowledge the assistance of Mr. Elisa Dunstan Kiwelu of Ardhi University, Dar es Salaam, Tanzania in mapping the study area; Mr Peter Machibya of the Department of Geology, University of Dar es Salaam, Tanzania in sediment characterisation; and Dr Valentine Kayawe Mubiana of the Department of Biology, University of Antwerp in ICP-MS analysis. The contributions of six anonymous reviewers, which greatly improved the manuscript for this paper, are highly appreciated. ; Approved Most recent IF: 1.208; 2014 IF: 1.295  
  Call Number UA @ admin @ c:irua:109234 Serial 5547  
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. pdf  doi
openurl 
  Title Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves Type A1 Journal article
  Year 2020 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, and originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527821700001 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169584 Serial 6451  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
 

 
Author Van Loon, J.; De Jong, M.; De Wael, K.; Du Bois, E. file  isbn
openurl 
  Title Transposing testing from lab to on-site environment : a case of cocaine powder sampling Type P3 Proceeding
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract (down) This paper reports on the transition process to convert a specific lab technique to the on-site, real-life environment. Bringing a lab test to an on-site environment involves many difficulties regarding to the context, people skills and environmental support. Within this project, a case about sampling for an electrochemical measurement, was investigated as a basis to reason upon some general conclusions related to the process of transposing lab-tests to an on-site environment. The current lab test was analysed and compared with a focus group discussion with future users. Based on the findings, assumptions for the new sampling technique in the specific case were formulated. New low-tech methods to achieve the sampling were extensively tested and verified. Starting from this chosen case an argumentation was set up to generalise the conclusions, by reasoning on other cases of products that already passed this transition to the field. Based on a comparison, we could discuss that the selected parameters related to impact of the context environment, of the people that should handle the tests, related to the reasons for transposing the technology, and related to the technology that will be transposed to the on-site environment, were of importance of almost all cases and can therefore be considered as context-independent and related to the transfer to on-site testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6384-131-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169896 Serial 6637  
Permanent link to this record
 

 
Author De Jong, M.; Florea, A.; Eliaerts, J.; Van Durme, F.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Tackling poor specificity of cocaine color tests by electrochemical strategies Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 11 Pages 6811-6819  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This paper presents electrochemical strategies for the fast screening of cocaine and most common cutting agents found in seized drug samples. First, a study on the performance of Scott color tests on cocaine and a wide range of cutting agents is described. The cutting agents causing false positive or false negative results when in mixture with cocaine are identified. To overcome the lack of specificity of color tests, we further propose a fast screening strategy by means of square wave voltammetry on disposable graphite screen printed electrodes, which reveals the unique fingerprint of cocaine and cutting agents. By employing a forward and backward scan and by a dual pH strategy, we enrich the electrochemical fingerprint and enable the simultaneous detection of cocaine and cutting agents. The effectiveness of the developed strategies was tested for the detection of cocaine in seized cocaine samples and compared with the color tests. Moreover, we prove the usefulness of square wave voltammetry for predicting possible interfering agents in color tests, based on the reduction peak of cobalt thiocyanate. The developed electrochemical strategies allow for a quick screening of seized cocaine samples resulting in a selective identification of drugs and cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434893200066 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 7 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. This work was also supported by Grants BR/314 /PI/APTADRU and IOF-SBO. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:151316 Serial 5867  
Permanent link to this record
 

 
Author De Wael, K.; Verstraete, A.; van Vlierberghe, S.; Dejonghe, W.; Dubruel, P.; Adriaens, A. url  openurl
  Title The electrochemistry of a gelatin modified gold electrode Type A1 Journal article
  Year 2011 Publication International journal of electrochemical science Abbreviated Journal Int J Electrochem Sc  
  Volume 6 Issue 6 Pages 1810-1819  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) This paper discusses the electrochemical behaviour of gelatin coated gold electrodes in physiological pH conditions in a potential window −1.5 till 1.0 V vs SCE by performing cyclic voltammetry. A comparison is made between gelatin A and gelatin B, which have respectively a positive and a negative net charge at physiological pH. The deposition of gelatin onto the gold surface is confirmed by means of attenuated total reflection-infrared (ATR-IR) spectroscopic analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1452-3981 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 1.469 Times cited Open Access  
  Notes ; The authors would like to acknowledge the Flemish Institute for Technological Research (VITO, Belgium) and the Research Foundation-Flanders (FWO, Belgium) for the Ph.D. funding granted to Annelies Verstraete. Karolien De Wael and Sandra Van Vlierberghe are also grateful to the Research Foundation-Flanders (FWO, Belgium) for their postdoctoral fellowship. ; Approved Most recent IF: 1.469; 2011 IF: 3.729  
  Call Number UA @ admin @ c:irua:89617 Serial 5598  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 145 Issue Pages 116447  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (down) This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723747000009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:183268 Serial 7460  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: