Number of records found: 4750
 | 
Citations
 | 
   web
Magnetically induced splitting of a giant vortex state in a mesoscopic superconducting disk”. Golubović, DS, Milošević, MV, Peeters FM, Moshchalkov VV, Physical review : B : condensed matter and materials physics 71, 180502 (2005). http://doi.org/10.1103/PhysRevB.71.180502
toggle visibility
Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents”. Wang JTW, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Shah AM, Sosabowski JK, Mather SJ, Roig A, Ke X, Van Tendeloo G, de Rosales RTM, Tobias G, Al-Jamal KT, Advanced functional materials 24, 1880 (2014). http://doi.org/10.1002/adfm.201302892
toggle visibility
Magnetic-field-induced metal-insulator transition in GaAs/AlGaAs quantum wells and superlattices”. Hilber W, Helm M, Hauke W, Peeters FM, Alavi K, Pathak RN, , 196 (1995)
toggle visibility
Magnetic-field-induced binding of few-electron systems in shallow quantum dots”. Szafran B, Bednarek S, Peeters FM, Physical review : B : condensed matter and materials physics 74, 115310 (2006). http://doi.org/10.1103/PhysRevB.74.115310
toggle visibility
Magnetic-field induced quantum-size cascades in superconducting nanowires”. Shanenko AA, Croitoru MD, Peeters FM, Physical review : B : condensed matter and materials physics 78, 024505 (2008). http://doi.org/10.1103/PhysRevB.78.024505
toggle visibility
Magnetic-field asymmetry of electron wave packet transmission in bent channels capacitively coupled to a metal gate”. Kalina R, Szafran B, Bednarek S, Peeters FM, Physical review letters 102, 066807 (2009). http://doi.org/10.1103/PhysRevLett.102.066807
toggle visibility
Magnetic traps for excitons in GaAs/AlxGa1-xAs quantum wells”. Freire JAK, Peeters FM, Matulis A, Freire VN, Farias GA, , 503 (2001)
toggle visibility
Magnetic properties of vortex states in spherical superconductors”. Xu B, Milošević, MV, Peeters FM, Physical review : B : condensed matter and materials physics 77, 144509 (2008). http://doi.org/10.1103/PhysRevB.77.144509
toggle visibility
Magnetic properties of the 6H perovskite Ba3Fe2TeO9”. Tang Y, Sena RP, Aydeev M, Battle PD, Cadogan JM, Hadermann J, Hunter EC, Journal of solid state chemistry 253, 347 (2017). http://doi.org/10.1016/J.JSSC.2017.06.019
toggle visibility
Magnetic properties of La3Ni2Sb Ta Nb1––O9, from relaxor to spin glass”. Chin C–M, Battle PD, Hunter EC, Avdeev M, Hendrickx M, Hadermann J, Journal of solid state chemistry (Print) 273, 175 (2019). http://doi.org/10.1016/j.jssc.2019.02.044
toggle visibility
Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain”. Nascimento JS, da Costa DR, Zarenia M, Chaves A, Pereira JM Jr, Physical review B 96, 115428 (2017). http://doi.org/10.1103/PHYSREVB.96.115428
toggle visibility
Magnetic properties of bcc-Fe(001)/C-60 interfaces for organic spintronics”. Tran TLA, Çakir D, Wong PKJ, Preobrajenski AB, Brocks G, van der Wiel WG, de Jong MP, Acs Applied Materials &, Interfaces 5, 837 (2013). http://doi.org/10.1021/AM3024367
toggle visibility
Magnetic properties and critical behavior of magnetically intercalated WSe₂, : a theoretical study”. Reyntjens PD, Tiwari S, van de Put ML, Sorée B, Vandenberghe WG, 2d Materials 8, 025009 (2021). http://doi.org/10.1088/2053-1583/ABD1CC
toggle visibility
Magnetic pinning of vortices in a superconducting film: the (anti)vortex-magnetic dipole interaction energy in the London approximation”. Milošević, MV, Yampolskii SV, Peeters FM, Physical review : B : condensed matter and materials physics 66, 174519 (2002). http://doi.org/10.1103/PhysRevB.66.174519
toggle visibility
Magnetic particles confined in a modulated channel : structural transitions tunable by tilting a magnetic field”. Galván Moya JE, Lucena D, Ferreira WP, Peeters FM, Physical review : E : statistical, nonlinear, and soft matter physics 89, 032309 (2014). http://doi.org/10.1103/PhysRevE.89.032309
toggle visibility
Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2”. Xu X, Jones MA, Cassidy SJ, Manuel P, Orlandi F, Batuk M, Hadermann J, Clarke SJ, Inorganic Chemistry 59, 15898 (2020). http://doi.org/10.1021/acs.inorgchem.0c02415
toggle visibility
Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers”. Tiwari S, Van de Put ML, Sorée B, Vandenberghe WG, npj 2D Materials and Applications 5, 54 (2021). http://doi.org/10.1038/S41699-021-00233-0
toggle visibility
Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene”. Masir MR, Vasilopoulos P, Peeters FM, New journal of physics 11, 095009 (2009). http://doi.org/10.1088/1367-2630/11/9/095009
toggle visibility
Magnetic interface states in graphene-based quantum wires”. Milton Pereira J, Peeters FM, Vasilopoulos P, Physical review : B : condensed matter and materials physics 75, 125433 (2007). http://doi.org/10.1103/PhysRevB.75.125433
toggle visibility
Magnetic freeze-out induced transition from three- to two-dimensional magnetotransport in Si-δ-doped InSb layers grown on GaAs”. Bogaerts R, de Keyser A, van Bockstal L, Herlach F, Karavolas VC, Peeters FM, Borghs G, , 706 (1995)
toggle visibility
Magnetic flux periodicity in mesoscopic d-wave symmetric and asymmetric superconducting loops”. Zha G-Q, Milošević, MV, Zhou S-P, Peeters FM, Physical review : B : solid state 80, 144501 (2009). http://doi.org/10.1103/PhysRevB.80.144501
toggle visibility
Magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot”. Chang K, Xia JB, Peeters FM, Applied physics letters 82, 2661 (2003). http://doi.org/10.1063/1.1568825
toggle visibility
Magnetic field induced vortices in graphene quantum dots”. Lavor IR, da Costa DR, Chaves A, Farias GA, Macedo R, Peeters FM, Journal Of Physics-Condensed Matter 32, 155501 (2020). http://doi.org/10.1088/1361-648X/AB6463
toggle visibility
Magnetic field induced spin and isospin blockade in two vertically coupled quantum dots”. Partoens B, Peeters FM, Europhysics letters 56, 86 (2001). http://doi.org/10.1209/epl/i2001-00491-5
toggle visibility
Magnetic field dependence of the xciton energy in type I and type II quantum disks”. Janssens KL, Peeters FM, Schweigert VA, Partoens B, Physica: B : condensed matter 298, 277 (2001). http://doi.org/10.1016/S0921-4526(01)00316-7
toggle visibility
Magnetic field dependence of the properties of excitons confined in a quantum disk”. Janssens KL, Peeters FM, Schweigert VA, Physica status solidi: B: basic research 224, 763 (2001). http://doi.org/10.1002/(SICI)1521-3951(200104)224:3<763::AID-PSSB763>3.0.CO;2-9
toggle visibility
Magnetic field dependence of the normal mode spectrum of a planar complex plasma cluster”. Kong M, Ferreira WP, Partoens B, Peeters FM, IEEE transactions on plasma science 32, 569 (2004). http://doi.org/10.1109/TPS.2004.826084
toggle visibility
Magnetic field dependence of the many-electron statis in a magnetic quantum dot: the ferromagnetic-antiferromagnetic transition”. Nguyen NTT, Peeters FM, Physical review : B : condensed matter and materials physics 78, 045321 (2008). http://doi.org/10.1103/PhysRevB.78.045321
toggle visibility
Magnetic field dependence of the exciton energy in a quantum disk”. Janssens KL, Peeters FM, Schweigert VA, Physical review : B : condensed matter and materials physics 63, 205311 (2001). http://doi.org/10.1103/PhysRevB.63.205311
toggle visibility
Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells”. Riva C, Peeters FM, Varga K, Physical review : B : condensed matter and materials physics 63, 115302 (2001). http://doi.org/10.1103/PhysRevB.63.115302
toggle visibility