|   | 
Details
   web
Record
Author King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V.
Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
Year (down) 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue 13 Pages 6058-6065
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000279211500036 Publication Date 2010-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 18 Open Access
Notes Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:83877 Serial 562
Permanent link to this record