|   | 
Details
   web
Records
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
Year (down) 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue Pages 021004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353650400004 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 58 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:134432 Serial 4530
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
Year (down) 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 104-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700023 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 32 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113766 Serial 1208
Permanent link to this record