|   | 
Details
   web
Records
Author Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Adams, F.
Title Molecular speciation of inorganic mixtures by Fourier transform laser microprobe mass sepctrometry Type A1 Journal article
Year (down) 2003 Publication International journal of mass spectrometry Abbreviated Journal Int J Mass Spectrom
Volume 225 Issue Pages 213-224
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000181179500002 Publication Date 2003-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-3806; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.702 Times cited 9 Open Access
Notes Approved Most recent IF: 1.702; 2003 IF: 2.361
Call Number UA @ lucian @ c:irua:41595 Serial 2183
Permanent link to this record
 

 
Author Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Adams, F.
Title Capabilities and limitations of Fourier transform laser microprobe mass spectrometry for molecular analysis of solids Type A1 Journal article
Year (down) 2002 Publication Vacuum Abbreviated Journal Vacuum
Volume 69 Issue Pages 307-313
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Fourier transform laser microprobe mass spectrometry (FT LMMS) has been developed for the molecular analysis of both organic and inorganic components at the surface of microobjects with the ultimate specificity of high-mass resolution. These capabilities are needed in numerous applications of practical material analysis, such as tracing back anomalies in microobjects. The purpose of this paper is to address representative example from industrial trouble shooting, in which organic and inorganic analytes in a single microparticle have been identified unambiguously. This motivates the research to extend the methodology towards quantification. This paper deals with the fundamental aspect of information depth, specifically for inorganic molecular adduct ions. Finally, data will show the quantitative capabilities of FT LMMS. A suitable methodology for the preparation of reference specimens has allowed the empirical calibration of the response as a function of the local concentration to be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000180739000050 Publication Date 2002-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 4 Open Access
Notes Approved Most recent IF: 1.53; 2002 IF: 0.723
Call Number UA @ lucian @ c:irua:43192 Serial 274
Permanent link to this record