|   | 
Details
   web
Records
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Prospects for out-of-plane magnetic field measurements through interference of electron vortex modes in the TEM Type A1 Journal article
Year (down) 2019 Publication Journal of optics Abbreviated Journal J Optics-Uk
Volume 21 Issue 12 Pages 124002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Magnetic field mapping in transmission electron microscopy is commonplace, but all conventional methods provide only a projection of the components of the magnetic induction perpendicular to the electron trajectory. Recent experimental advances with electron vortices have shown that it is possible to map the out of plane magnetic induction in a TEM setup via interferometry with a specifically prepared electron vortex state carrying high orbital angular momentum (OAM). The method relies on the Aharonov?Bohm phase shift that the electron undergoes when going through a longitudinal field. Here we show how the same effect naturally occurs for any electron wave function, which can always be described as a superposition of OAM modes. This leads to a clear connection between the occurrence of high-OAM partial waves and the amount of azimuthal rotation in the far field angular distribution of the beam. We show that out of plane magnetic field measurement can thus be obtained with a much simpler setup consisting of a ring-like aperture with azimuthal spokes. We demonstrate the experimental setup and explore the achievable sensitivity of the magnetic field measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000499367800001 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.741 Times cited 3 Open Access
Notes The authors thank V Grillo and T Harvey for interesting and fruitful discussion. GG acknowledges support from a postdoctoral fellow-ship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. AB acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). DM gratefully acknowledges funding of the FEBID capability through joint funding by University of Glasgow & EPSRC through a Strategic Equipment Grant (EP/P001483/1). Approved Most recent IF: 1.741
Call Number UA @ admin @ c:irua:165116 Serial 6319
Permanent link to this record