|   | 
Details
   web
Records
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G.
Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 20 Pages 9827-9837
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000290652200001 Publication Date 2011-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 105 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89556 Serial 3394
Permanent link to this record
 

 
Author Neyts, E.C.; Khalilov, U.; Pourtois, G.; van Duin, A.C.T.
Title Hyperthermal oxygen interacting with silicon surfaces : adsorption, implantation, and damage creation Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 15 Pages 4818-4823
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, we have investigated the effect of single-impact, low-energy (thermal-100 eV) bombardment of a Si(100){2 × 1} surface by atomic and molecular oxygen. Penetration probability distributions, as well as defect formation distributions, are presented as a function of the impact energy for both species. It is found that at low impact energy, defects are created chemically due to the chemisorption process in the top layers of the surface, while at high impact energy, additional defects are created by a knock-on displacement of Si. These results are of particular importance for understanding device performances of silica-based microelectronic and photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288401200060 Publication Date 2011-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 28 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89858 Serial 1543
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
Year (down) 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 34 Pages 14503-14509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000281129100027 Publication Date 2010-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 110 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:84588 Serial 882
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A.
Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
Year (down) 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 12 Pages 5652-5660
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000275855600044 Publication Date 2010-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access
Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:81391 Serial 402
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Numerical study of the size-dependent melting mechanisms of nickel nanoclusters Type A1 Journal article
Year (down) 2009 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 113 Issue 7 Pages 2771-2776
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536; 2009 IF: 4.224
Call Number UA @ lucian @ c:irua:76495 Serial 2410
Permanent link to this record
 

 
Author Burriel, M.; Santiso, J.; Rossell, M.D.; Van Tendeloo, G.; Figueras, A.; Garcia, G.
Title Enhancing total conductivity of La2NiO4+\delta epitaxial thin films by reducing thickness Type A1 Journal article
Year (down) 2008 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 112 Issue 29 Pages 10982-10987
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High quality epitaxial c axis oriented La2NiO4+ä thin films have been prepared by the pulsed injection metal organic chemical vapor deposition technique on different substrates. High-resolution electron microscopy/transmission electron microscopy has been used to confirm the high crystalline quality of the deposited films. The c-parameter evolution has been studied by XRD as a function of time and gas atmosphere. The high temperature transport properties along the basal a−b plane of epitaxial La2NiO4+ä films have been measured, and the total conductivity of the layers has been found to increase as the thickness is reduced. Layers of 50 nm and thinner have shown a maximum conductivity larger than that measured for single-crystals, in particular, the 33 nm thick films with a conductivity of 475 S/cm in oxygen correspond to the highest value measured to date for this material.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000257724100057 Publication Date 2008-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 35 Open Access
Notes Approved Most recent IF: 4.536; 2008 IF: 3.396
Call Number UA @ lucian @ c:irua:76440 Serial 1067
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
Year (down) 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 110 Issue 18 Pages 9183-9187
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000237451300042 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 109 Open Access
Notes Approved Most recent IF: 3.177; 2006 IF: 4.115
Call Number UA @ lucian @ c:irua:58264 Serial 1738
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Van Tendeloo, G.; Yoshimura, M.
Title Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide Type A1 Journal article
Year (down) 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 110 Issue 9 Pages 4030-4038
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000235944500033 Publication Date 2006-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 234 Open Access
Notes Approved Most recent IF: 3.177; 2006 IF: 4.115
Call Number UA @ lucian @ c:irua:56988 Serial 1540
Permanent link to this record
 

 
Author Collart, O.; Cool, P.; van der Voort, P.; Meynen, V.; Vansant, E.F.; Houthoofd, K.J.; Grobet, P.J.; Lebedev, O.I.; Van Tendeloo, G.
Title Aluminum incorporation into MCM-48 toward the creation of Brønsted acidity Type A1 Journal article
Year (down) 2004 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 108 Issue Pages 13905-13912
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000224164000003 Publication Date 2004-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 13 Open Access
Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.177; 2004 IF: 3.834
Call Number UA @ lucian @ c:irua:49014 Serial 92
Permanent link to this record
 

 
Author Liu, S.; Cool, P.; Collart, O.; van der Voort, P.; Vansant, E.F.; Lebedev, O.I.; Van Tendeloo, G.; Jiang, M.
Title The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent Type A1 Journal article
Year (down) 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 107 Issue Pages 10405-10411
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000185401900013 Publication Date 2003-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 134 Open Access
Notes Approved Most recent IF: 3.177; 2003 IF: 3.679
Call Number UA @ lucian @ c:irua:46264 Serial 1643
Permanent link to this record
 

 
Author Cassiers, K.; van der Voort, P.; Linssen, T.; Vansant, E.F.; Lebedev, O.; van Landuyt, J.
Title A counterion-catalyzed (S0H+)(X-I+) pathway toward heat- and steam-stable mesostructured silica assembled from amines in acidic conditions Type A1 Journal article
Year (down) 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 107 Issue 16 Pages 3690-3696
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract An alternative pathway to assemble mesoporous molecular sieve silicas is developed using nonionic alkylamines and N,N-dimethylalkylamines (SO) as structure-directing agents in acidic conditions. The synthesized mesostructures possess wormhole-like frameworks with pore sizes and pore volumes in the range of 20-90 Angstrom and 0.5-1.3 cm(3)/g, respectively. The formation of the mesophase is controlled by a counterion-mediated mechanism of the type (S(0)H(+))(X(-)I(+)), where S(0)H(+) are protonated water molecules that are hydrogen bonded to the lone electron pairs on the amine surfactant headgroups (S(0)H(+)), X(-) is the counteranion originating from the acid, and I(+) are the positively charged (protonated) silicate species. We found that the stronger the ion X(-) is bonded to S(0)H(+), the more it catalyzes the silica condensation into (S(0)H(+))(X(-)I(+)). Br(-) is shown to be a strong binding anion and therefore a fast silica polymerization promoter compared to Cl(-) resulting in the formation of a higher quality mesophase for the Br(-) syntheses. We also showed that the polymerization rate of the silica, dictated by the counterion, controls the morphology of the mesostructures from nonuniform agglomerated blocks in the case of Br(-) syntheses to spherical particles for the Cl(-) syntheses. Next to many benefits such as low temperature, short synthesis time, and the use of inexpensive, nontoxic, and easily extractable amine templates, the developed materials have a remarkable higher thermal and hydrothermal stability compared to hexagonal mesoporous silica, which is also prepared with nonionic amines but formed through the S(0)I(0) mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000182350200005 Publication Date 2003-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 9 Open Access
Notes Approved Most recent IF: 3.177; 2003 IF: 3.679
Call Number UA @ lucian @ c:irua:103300 Serial 24
Permanent link to this record
 

 
Author Linssen, T.; Cool, P.; Baroudi, M.; Cassiers, K.; Vansant, E.F.; Lebedev, O.; van Landuyt, J.
Title Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials Type A1 Journal article
Year (down) 2002 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 106 Issue Pages 4470-4476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000175356900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 23 Open Access
Notes Approved Most recent IF: 3.177; 2002 IF: 3.611
Call Number UA @ lucian @ c:irua:46279 Serial 1811
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Accurate ab initio quartic force fields and thermochemistry of FNO and CINO Type A1 Journal article
Year (down) 1994 Publication The journal of physical chemistry Abbreviated Journal
Volume 98 Issue 44 Pages 11394-11400
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The quartic force fields of FNO and CINO have been computed at the CCSD(T)/cc-pVTZ level. Using an ''augmented'' basis set dramatically improves results for FNO but has no significant effect for CINO. The best computed force field for FNO yields harmonic frequencies and fundamentals in excellent agreement with experiment. Overall, the force fields proposed in the present work are probably the most reliable ones ever published for these molecules. Total atomization energies have been computed using basis sets of spdfg quality: our best estimates are Sigma D-0 = 208.5 +/- 1 and 185.4 +/- 1 kcal/mol for FN0 and CINO, respectively. The computed value for FNO suggests a problem with the established experimental heat of formation. Thermodynamic tables in JANAF style at 100-2000 K are presented for both FNO and CINO.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1994PP89400022 Publication Date 2005-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 21 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12310 Serial 44
Permanent link to this record