toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Terzano, R.; Denecke, M.A.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K. url  doi
openurl 
  Title Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report) Type A1 Journal article
  Year (down) 2019 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem  
  Volume 91 Issue 6 Pages 1029-1063  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471262400011 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.626 Times cited 3 Open Access  
  Notes ; This document was developed as a part of IUPAC, Funder Id: http://dx.doi.org/ 10.13039/100006987, Project #2016-019-2-600 “Trace elements analysis of environmental samples with X-rays: from synchrotron to lab and from lab to synchrotron” led by Roberto Terzano (Task Group Chair). Task Group Members for this project were: Melissa Anne Denecke, Gerald Falkenberg, Armin Gross, Koen Janssens, Bradley Miller, David Paterson, Ryan Tappero, Fang-Jie Zhao. Their contribution to the project is gratefully acknowledged. ; Approved Most recent IF: 2.626  
  Call Number UA @ admin @ c:irua:161369 Serial 5803  
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S. pdf  doi
openurl 
  Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
  Year (down) 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem  
  Volume 82 Issue 6 Pages 1283-1299  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279063900010 Publication Date 2010-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.626 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.626; 2010 IF: 2.134  
  Call Number UA @ lucian @ c:irua:82108 Serial 2134  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: