|   | 
Details
   web
Records
Author Sui, Y.; Vlaeminck, S.E.
Title Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina Type A1 Journal article
Year (down) 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 4 Pages 1032-1040
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity. RESULTS The biomass protein content followed an increasedecrease pattern throughout the growth phases, with a maximum in the exponential phase (6080% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (13 mol L−1 salinity, pH 7.59.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 1697%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium. CONCLUSION This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461237300004 Publication Date 2018-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157955 Serial 7849
Permanent link to this record
 

 
Author Yang, Z.; Zhu, W.; Yu, D.; Bo, Y.; Li, J.
Title Enhanced carbon and nitrogen removal performance of simultaneous anammox and denitrification (SAD) with mannitol addition treating saline wastewater Type A1 Journal article
Year (down) 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 2 Pages 377-388
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Simultaneous anammox and denitrification (SAD) can remove carbon and nitrogen. However, its performance is suppressed under saline surroundings. In this work, mannitol was used to enhance a SAD process treating saline wastewater. RESULTS The optimum carbon and nitrogen removal was achieved at 0.2 mmol L-1 mannitol, during which ammonium removal efficiency (ARE), nitrite removal efficiency (NRE) and chemical oxygen demand (COD) removal efficiency were 96.95%, 93.70% and 90.05%, respectively. The maximum ammonium removal rate (ARR), nitrite removal rate (NRR) and the specific anammox activity (SAA) were increased by 25.49%, 55.84% and 33.83% with optimum addition (0.2 mmol L-1 mannitol) respectively. The diameter of sludge was enlarged with the addition of mannitol (<= 0.2 mmol L-1). The Tseng-Wayman model was more suitable to simulate the whole SAD process. The modified logistic model, the modified Boltzman model and the modified Gompertz model were all appropriate to describe nitrogen removal in a typical cycle with the addition of mannitol. CONCLUSION Mannitol was effective in enhancing a SAD process treating saline wastewater, and maximum nitrogen removal was achieved at mannitol = 0.2 mmol L-1. The Tseng-Wayman model satisfactorily predicted the whole SAD process treating saline wastewater with mannitol addition. (c) 2018 Society of Chemical Industry
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455262100004 Publication Date 2018-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156712 Serial 7911
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I.
Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
Year (down) 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot
Volume 91 Issue 6 Pages 1914-1922
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375768300040 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.135 Times cited 3 Open Access
Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135
Call Number UA @ admin @ c:irua:127694 Serial 5972
Permanent link to this record