|   | 
Details
   web
Records
Author Yao, W.; Hui, C.; Wang, L.; Wang, J.; Gielis, J.; Shi, P.
Title Comparison of the performance of two polar equations in describing the geometries of elliptical fruits Type A1 Journal article
Year (down) 2024 Publication Botany letters Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract In nature, the two-dimensional (2D) profiles of fruits from many plants often resemble ellipses. However, it remains unclear whether these profiles strictly adhere to the ellipse equation, as many natural shapes resembling ellipses are actually better described as superellipses. The superellipse equation, which includes an additional parameter n compared to the ellipse equation, can generate a broader range of shapes, with the ellipse being just a special case of the superellipse. To investigate whether the 2D profiles of fruits are better described by ellipses or superellipses, we collected a total of 751 mature and undamaged fruits from 31 naturally growing plants of Cucumis melo L. var. agrestis Naud. Our analysis revealed that most adjusted root-mean-square errors (> 92% of the 751 fruits) for fitting the superellipse equation to the fruit profiles were consistently less than 0.0165. Furthermore, there were 638 of the 751 fruits (ca. 85%) with the 95% confidence intervals of the estimated parameter n in the superellipse equation not including 2. These findings suggest that the profiles of C. melo var. agrestis fruits align more closely with the superellipse equation than with the ellipse equation. This study provides evidence for the existence of the superellipse in fruit profiles, which has significant implications for studying fruit geometries and estimating fruit volumes using the solid of revolution formula. Furthermore, this discovery may contribute to a deeper understanding of the mechanisms driving the evolution of fruit shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219634500001 Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205955 Serial 9140
Permanent link to this record
 

 
Author Lian, M.; Shi, P.; Zhang, L.; Yao, W.; Gielis, J.; Niklas, K.J.
Title A generalized performance equation and its application in measuring the Gini index of leaf size inequality Type A1 Journal article
Year (down) 2023 Publication Trees: structure and function Abbreviated Journal
Volume 37 Issue Pages 1555-1565
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The goal of this study is to provide a rigorous tool to quantify the inequality of the leaf size distribution of an individual plant, thereby serving as a reference trait for quantifying plant adaptations to local environmental conditions. The tool to be presented and tested employs three components: (1) a performance equation (PE), which can produce flexible asymmetrical and symmetrical bell-shaped curves, (2) the Lorenz curve (i.e., the cumulative proportion of leaf size vs. the cumulative proportion of number of leaves), which is the basis for calculating, and (3) the Gini index, which measures the inequality of leaf size distribution. We sampled 12 individual plants of a dwarf bamboo and measured the area and dry mass of each leaf of each plant. We then developed a generalized performance equation (GPE) of which the PE is a special case and fitted the Lorenz curve to leaf size distribution using the GPE and PE. The GPE performed better than the PE in fitting the Lorenz curve. We compared the Gini index of leaf area distribution with that of leaf dry mass distribution and found that there was a significant difference between the two indices that might emerge from the scaling relationship between leaf dry mass and area. Nevertheless, there was a strong correlation between the two Gini indices (r2 = 0.9846). This study provides a promising tool based on the GPE for quantifying the inequality of leaf size distributions across individual plants and can be used to quantify plant adaptations to local environmental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001069570200001 Publication Date 2023-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-1890; 1432-2285 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.3 Times cited Open Access Not_Open_Access: Available from 26.02.2024
Notes Approved Most recent IF: 2.3; 2023 IF: 1.842
Call Number UA @ admin @ c:irua:199562 Serial 8874
Permanent link to this record
 

 
Author Yao, W.; Niinemets, Ü.; Yao, W.; Gielis, J.; Schrader, J.; Yu, K.; Shi, P.
Title Comparison of two simplified versions of the Gielis equation for describing the shape of bamboo leaves Type A1 Journal article
Year (down) 2022 Publication Plants Abbreviated Journal
Volume 11 Issue 22 Pages 3058-11
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Bamboo is an important component in subtropical and tropical forest communities. The plant has characteristic long lanceolate leaves with parallel venation. Prior studies have shown that the leaf shapes of this plant group can be well described by a simplified version (referred to as SGE-1) of the Gielis equation, a polar coordinate equation extended from the superellipse equation. SGE-1 with only two model parameters is less complex than the original Gielis equation with six parameters. Previous studies have seldom tested whether other simplified versions of the Gielis equation are superior to SGE-1 in fitting empirical leaf shape data. In the present study, we compared a three-parameter Gielis equation (referred to as SGE-2) with the two-parameter SGE-1 using the leaf boundary coordinate data of six bamboo species within the same genus that have representative long lanceolate leaves, with >300 leaves for each species. We sampled 2000 data points at approximately equidistant locations on the boundary of each leaf, and estimated the parameters for the two models. The root–mean–square error (RMSE) between the observed and predicted radii from the polar point to data points on the boundary of each leaf was used as a measure of the model goodness of fit, and the mean percent error between the RMSEs from fitting SGE-1 and SGE-2 was used to examine whether the introduction of an additional parameter in SGE-1 remarkably improves the model’s fitting. We found that the RMSE value of SGE-2 was always smaller than that of SGE-1. The mean percent errors among the two models ranged from 7.5% to 20% across the six species. These results indicate that SGE-2 is superior to SGE-1 and should be used in fitting leaf shapes. We argue that the results of the current study can be potentially extended to other lanceolate leaf shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000887783400001 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:191859 Serial 7289
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.;
Title Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
Year (down) 2014 Publication Nano letters Abbreviated Journal Nano Lett
Volume 14 Issue 8 Pages 4389-4394
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000340446200028 Publication Date 2014-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access
Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:118128 Serial 3678
Permanent link to this record