|   | 
Details
   web
Records
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A.
Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
Year (up) 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 29 Issue 2 Pages 249-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329934000005 Publication Date 2013-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
Call Number UA @ lucian @ c:irua:112896 Serial 2427
Permanent link to this record
 

 
Author Wen, D.-Q.; Zhang, Q.-Z.; Jiang, W.; Song, U.-H.; Bogaerts, A.; Wang, Y.-N.
Title Phase modulation in pulsed dual-frequency capacitively coupled plasmas Type A1 Journal article
Year (up) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 23 Pages 233303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Particle-in-cell/Monte Carlo collision simulations, coupled with an external circuit, are used to investigate the behavior of pulsed dual-frequency (DF) capacitively coupled plasmas (CCPs). It is found that the phase shift θ between the high (or low) frequency source and the pulse modulation has a great influence on the ion density and the ionization rate. By pulsing the high frequency source, the time-averaged ion density shows a maximum when θ = 90∘. The time-averaged ion energy distribution functions (IEDFs) at the driven electrode, however, keep almost unchanged, illustrating the potential of pulsed DF-CCP for independent control of ion density (and flux) and ion energy. A detailed investigation of the temporal evolution of the plasma characteristics indicates that several high frequency harmonics can be excited at the initial stage of a pulse period by tuning the phase shift θ, and this gives rise to strong sheath oscillations, and therefore high ionization rates. For comparison, the pulsing of the low frequency source is also studied. In this case, the ion density changes slightly as a function of time, and the time-averaged ion density shows the same trend as in the HF modulation for different phase shifts θ. Moreover, the time-averaged IEDFs at the driven electrode can be modulated, showing the potential to reduce the maximum ion bombardment energy.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000338106000008 Publication Date 2014-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 8 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:117415 Serial 2585
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A.
Title Reaction pathways of biomedically active species in an Ar plasma jet Type A1 Journal article
Year (up) 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 23 Issue 3 Pages 035015-35027
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we analyse the gas phase production and loss pathways for several biomedically active species, i.e. N2(A), O, O3, O2(a), N, H, HO2, OH, NO, NO2, N2O5, H2O2, HNO2 and HNO3, in an argon plasma jet flowing into an open humid air atmosphere. For this purpose, we employ a zero-dimensional reaction kinetics model to mimic the typical experimental conditions by fitting several parameters to experimentally measured values. These include ambient air diffusion, the gas temperature profile and power deposition along the jet effluent. We focus in detail on how the pathways of the biomedically active species change as a function of the position in the effluent, i.e. inside the discharge device, active plasma jet effluent and afterglow region far from the nozzle. Moreover, we demonstrate how the reaction kinetics and species production are affected by different ambient air humidities, total deposited power into the plasma and gas temperature along the jet. It is shown that the dominant pathways can drastically change as a function of the distance from the nozzle exit or experimental conditions.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000337891900017 Publication Date 2014-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117075 Serial 2820
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C.
Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
Year (up) 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 12 Pages 1156-1168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000346034700007 Publication Date 2014-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 22 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:121269 Serial 2822
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Chen, Z.; Bogaerts, A.
Title Response to “Comment on 'Laser ablation of Cu and plume expansion into 1 atm ambient gas'” [J. Appl. Phys. 115, 166101 (2014)] Type Editorial
Year (up) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 16 Pages 166102
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000335228400092 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:117171 Serial 2898
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year (up) 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A.
Title Special issue on fundamentals of plasmasurface interactions Type Editorial
Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 220301
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900001 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 2 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116917 Serial 3068
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
Year (up) 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 23 Issue 4 Pages 045004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000345761500014 Publication Date 2014-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 170 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117398 Serial 3108
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A.
Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 35 Pages 355205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000341353800017 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 8 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:118327 Serial 3521
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
Year (up) 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue Pages 11981-11987
Keywords A1 Journal article; PLASMANT
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:119408 Serial 3636
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
Year (up) 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 20 Pages 11981-11987
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:121106 Serial 3637
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900011 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 130 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116920 Serial 3803
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title A 2D model for a gliding arc discharge Type A1 Journal article
Year (up) 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200026 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author Zhao, S.-X.; Zhang, Y.-R.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
Title Bulk plasma fragmentation in a C4F8 inductively coupled plasma : a hybrid modelling study Type A1 Journal article
Year (up) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 243303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000357613900009 Publication Date 2015-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:126477 Serial 261
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
Year (up) 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 8 Issue 8 Pages 702-716
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000349954400019 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 131 Open Access
Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.;
Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
Year (up) 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 13849
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000360909000001 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 32 Open Access
Notes Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127410 Serial 419
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Bogaerts, A.
Title Cryogenic etching of silicon with SF6 inductively coupled plasmas: a combined modelling and experimental study Type A1 Journal article
Year (up) 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 155204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid Monte Carlofluid model is applied to simulate the wafer-temperature-dependent etching of silicon with SF6 inductively coupled plasmas (ICP). The bulk plasma within the ICP reactor volume as well as the surface reactions occurring at the wafer are self-consistently described. The calculated etch rates are validated by experiments. The calculations and experiments are performed at two different wafer temperatures, i.e. 300 and 173 K, resembling conventional etching and cryoetching, respectively. In the case of cryoetching, a physisorbed SFx layer (x = 06) is formed on the wafer, which is negligible at room temperature, because of fast thermal desorption, However, even in the case of cryoetching, this layer can easily be disintegrated by low-energy ions, so it does not affect the etch rates. In the investigated pressure range of 19 Pa, the etch rate is always slightly higher at cryogenic conditions, both in the experiments and in the model, and this could be explained in the model due to a local cooling of the gas above the wafer, making the gas denser and increasing the flux of reactive neutrals, like F and F2, towards the wafer.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351856600009 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 9 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124209 Serial 551
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G.
Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
Year (up) 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 025004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000356816200008 Publication Date 2015-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:123534 Serial 704
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A.
Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
Year (up) 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 755-763
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000359672400007 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 63 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:126822 Serial 799
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-P.; Wang, Y.-N.; Bogaerts, A.
Title Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma Type A1 Journal article
Year (up) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 033301
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (1030 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000358429200004 Publication Date 2015-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:126735 Serial 861
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N.
Title Electromagnetic effects in high-frequency large-area capacitive discharges : a review Type A1 Journal article
Year (up) 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 020801
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength k in the plasma becomes comparable to the electrode radius, and the plasma skin depth d becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwells equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.
Address
Corporate Author Thesis
Publisher A v s amer inst physics Place of Publication Melville Editor
Language Wos 000355739500007 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 10 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:123541 Serial 903
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
Year (up) 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015024
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200025 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 100 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N.
Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
Year (up) 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 061303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365503800020 Publication Date 2015-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 9 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:126824 Serial 1229
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C.
Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
Year (up) 2015 Publication Biointerphases Abbreviated Journal Biointerphases
Volume 10 Issue 10 Pages 029501
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600019 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 10 Open Access
Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:121371 Serial 1492
Permanent link to this record
 

 
Author Wende, K.; Williams, P.; Dalluge, J.; Van Gaens, W.; Aboubakr, H.; Bischof, J.; von Woedtke, T.; Goyal, S.M.; Weltmann, K.D.; Bogaerts, A.; Masur, K.; Bruggeman, P.J.;
Title Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet Type A1 Journal article
Year (up) 2015 Publication Biointerphases Abbreviated Journal Biointerphases
Volume 10 Issue 10 Pages 029518
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argonoxygen and argonair plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argonoxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2 − or ClO−. These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600036 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 137 Open Access
Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:126774 Serial 1549
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
Year (up) 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 162-171
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000350275400005 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A.
Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
Year (up) 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 021310
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000355739500026 Publication Date 2015-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 3 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:122650 Serial 2107
Permanent link to this record
 

 
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A.
Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
Year (up) 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 35 Issue 35 Pages 217-230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000347285800014 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited 9 Open Access
Notes Approved Most recent IF: 2.355; 2015 IF: 2.056
Call Number c:irua:118882 Serial 2108
Permanent link to this record