toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Penders, A.; Konstantinovic, M.J.; Bosch, R.W.; Schryvers, D. pdf  doi
openurl 
  Title Crack initiation in tapered high Si stainless steel specimens : stress threshold analyses Type A1 Journal article
  Year (up) 2020 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tapered specimens were used for an accelerated test technique to study the crack initiation of high Si stainless steel by means of constant elongation rate tensile testing in a simulated pressurised water reactor environment. Detailed crack density distributions were obtained by applying an advanced crack detection algorithm on iteratively displaced scanning electron microscopy pictures featuring stress corrosion cracks along the specimen's gauge length. By means of finite-element analysis, prominent peaks in the crack density graphs are demonstrated to be related to stress relief and stress build-up during the crack initiation phase. Intrinsic scatter related to the crack detection suggests that stress corrosion cracking is independent of the strain-rate for strain-rates lower than 10(-6 )s(-1). Based on the extrapolation to constant load conditions, the critical threshold value for the duplex high Si stainless steel is estimated to be around 580 MPa.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549651600001 Publication Date 2020-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.8 Times cited 1 Open Access Not_Open_Access  
  Notes ; We would like to acknowledge ENGIE Electrabel for the financial support of this work under the contract number BSUEZ5500. ; Approved Most recent IF: 1.8; 2020 IF: 0.879  
  Call Number UA @ admin @ c:irua:171292 Serial 6478  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year (up) 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
  Year (up) 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 565 Issue Pages 153727-16  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799256300004 Publication Date 2022-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:188609 Serial 7086  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinović, M.J.; Van Renterghem, W.; Bosch, R.-W.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Characterization of IASCC crack tips extracted from neutron-irradiated flux thimble tube specimens in view of a probabilistic fracture model Type A1 Journal article
  Year (up) 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 571 Issue Pages 154015-154016  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study reports the properties of irradiation assisted stress corrosion crack tips extracted by means of focused-ion beam from 60 to 80 dpa neutron-irradiated O-ring specimens tested under straining conditions under a pressurized-water reactor environment. Various crack tip morphologies and surrounding deformation features were analyzed as a function of applied stress, surface oxidation state and loading form – constant versus cyclic. All investigated cracks exhibit grain boundary oxidation in front of the crack tip, with the extent of oxidation being proportional to applied stress. These findings clearly demonstrate that, under the subcritical crack propagation regime, the grain boundary oxide grows faster than the crack. On the other hand, crack tips appertaining to specimens with removed oxide layer at the outer surface show comparatively less oxidation at the crack tip, which could indicate towards crack initiation from regions that exemplify lower stress, such as the O-ring inner surface. Cyclic loading is found to have a more pronounced effect on the crack tip microstructure, demonstrating increased deformation twinning and -martensitic transformation, which signifies towards an increased susceptibility to intergranular failure. Still, the extent of crack tip grain boundary oxidation in this case agrees well with expected values for maximum stress applied during cyclic loading. All results are interpreted based on the probabilistic subcritical crack propagation mechanism and provide strong support to a stress-driven internal oxidation model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000872389200009 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:190375 Serial 7135  
Permanent link to this record
 

 
Author Penders, A.G. url  openurl
  Title Microstructural investigation of irradiation assisted stress corrosion cracking mechanisms based on focused ion beam analysis of tested and industrial specimens Type Doctoral thesis
  Year (up) 2022 Publication Abbreviated Journal  
  Volume Issue Pages xxxviii, 226 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Irradiation assisted stress corrosion cracking (IASCC) is an intergranular cracking effect which can occur in heavily irradiated internal structural components of nuclear reactor cores. It is a complex phenomenon which is not yet fully understood because it occurs through an interplay of several material degradation processes. The factors that influence IASCC susceptibility include irradiation damage (neutrons and other irradiation particles stemming from the nuclear fission reaction), the operating temperature of the nuclear reactor, water corrosion, operating stresses, and the composition of materials susceptible to IASCC. Such materials are typically fabricated from austenitic stainless steels because of their relatively high strength, ductility, and fracture toughness. However, besides excellent metallurgical and corrosion resistant qualities, the operating conditions may still cause severe material degradation and component failure, which is extremely important for nuclear power plant safety and lifetime managements. Despite much accumulated data in the literature, both crack initiation and crack propagation mechanisms still need to be further elucidated. To that end, a probabilistic fracture model entitled the subcritical crack propagation (SCP) was recently developed, which assumes that the oxidized part of stainless steel in front of the crack plays an essential role in the crack initiation and crack propagation in sample failures. Still, despite a very good agreement with experimental observations, the SCP model but also other contemporary models favoured within the literature, require further experimental verification to what concerns the investigation of (IA)SCC. To that end, the main objective of this doctorate was to utilize experimental instrumentations like SEM, FIB-SEM and (S)TEM to conduct the investigation of the crack initiation and propagation processes in both tested and industrial specimens. Some of the investigated materials were retrieved within a nuclear reactor and are thus considered as unique test material to investigate the material degradation processes relevant for cracking. Other specimens were tailor-made to simulate the cracking processes of irradiated materials in otherwise un-irradiated materials. The newly acquired experimental results in this doctorate help rationalize existing models and methodologies used in the literature to analyse the IASCC failures of structural materials of reactor components. These results also facilitate in the development of predictive methodologies and mitigation strategies towards IASCC cracking and provide more information on IASCC from a microstructural perspective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192431 Serial 7323  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: