|   | 
Details
   web
Records
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P.
Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 001206226700001 Publication Date 2024-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access
Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWO- Vlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWO- Vlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791
Call Number EMAT @ emat @c:irua:205967 Serial 9118
Permanent link to this record
 

 
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P.
Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 001206226700001 Publication Date 2024-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access
Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWOVlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWOVlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791
Call Number EMAT @ emat @c:irua:205967 Serial 9130
Permanent link to this record
 

 
Author Raveau, B.; Michel, C.; Hervieu, M.; Van Tendeloo, G.; Maignan, A.
Title Stabilization of mercury-based superconductors by foreign cations Type A1 Journal article
Year 1994 Publication Annales de chimie (1914) T2 – 4th North-African Materials Science Symposium (JMSM 94), NOV 23-24, 1994, CASABLANCA, MOROCCO Abbreviated Journal 4th North-African Materials Science Symposium (JMSM 94), NOV 23-24, 1994, CASABLANCA, MOROCCO
Volume 19 Issue 7-8 Pages 487-492
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recently discovered superconducting mercury-based cuprates HgBa2Can-1CunO2n+2+delta have proved difficult to synthesize as single phases and are sensitive to environment (CO2, moisture). The present paper gives an overview of new series mercury based superconductors, whose stabilisation is based on the fact that a foreign cation with a higher valency than Hg(II) must be introduced in the mercury layers, in order to fill up partially the oxygen vacancies of these layers. By this method, several new series of superconductors involving strontium instead of barium with critical temperatures ranging from 27 K to 95 K have been isolated : Hg0.5Bi0.5Sr2-xLaxCuO4+delta, Hg(0.5)Bi(0.5)Sr(2)Ca(1-x)R(x)Cu(2)O(6+delta) (R Y, Nd, Pr), Pb0.7Hg0.3Sr2-xLaxCuO4+delta, Pb(0.7)Hg(0.3)Sr(2)Ca(1-x)R(x)Cu(2)O(6+delta) (R = Y, Nd) Hg(1-x)Pr(x)Sr(2)A(1-x')Pr(x') Cu2O6+delta (A = Sr, Ca), Pb0.7Hg0.3Sr2Cu2CO3O7 and Hg1-xCrxSr2CuO4+delta. The behaviour of the praseodymium cuprates that exhibit a rather sharp transition and reach a Tc of 85 K is especially discussed. A method to synthesize new ''Ba-Hg'' superconducting cuprates with the 1212 structure at normal pressure with a Tc up to 110 K is also presented.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos (up) A1994RC75300027 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0151-9107 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:104472 Serial 3137
Permanent link to this record