toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Alfeld, M.; Janssens, K.
  Title Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: a case study on a version of Caravaggio's painting Supper at Emmaus Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
  Volume 30 Issue 3 Pages 777-789
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Technical progress in the fields of X-ray sources, optics and detectors is constantly enhancing the pace of data acquisition in XRF imaging. This enlarges the size of the hyperspectral datasets and the number of their sub-parts. This paper describes the challenges in processing large XRF datasets featuring several million pixels/spectra and the strategies developed to overcome them. During the investigation of historical paintings by scanning macro-XRF the main challenges are the correct identification of all spectral features in a dataset and its timely processing. For the identification of spectral features different approaches are discussed, i.e. the use of sum spectra, maximum pixel spectra and of chi(2)(r) maps. For the time-efficient, artefact-free evaluation of XRF imaging data, different software packages are evaluated and intercompared (AXIL, PyMCA, GeoPIXE and the in-house written datamuncher). The process of data evaluation is illustrated on a large dataset (3.4 MPixels) acquired during the investigation of a version of Caravaggio's Supper at Emmaus (143 x 199.5 cm(2)). This 17th century painting is currently the largest object entirely scanned with macroscopic XRF.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000350650800026 Publication Date 2015-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.379 Times cited 67 Open Access
  Notes ; The authors would like to thank W. de Nolf, A. Rothkirch, C. Ryan, A. Sole, B. Vekemans, P. van Espen and L. Vincze for their fruitful discussions over the years. Furthermore, the authors thank D. Swetzoff for his support. M. Alfeld was from 2009 to 2013 the recipient of a Ph.D. fellowship of the Research Foundation-Flanders (FWO, Brussels). ; Approved Most recent IF: 3.379; 2015 IF: 3.466
  Call Number UA @ admin @ c:irua:125477 Serial 5848
Permanent link to this record
 

 
Author Lao, M.; Eisterer, M.; Stadel, O.; Meledin, A.; Van Tendeloo, G.
  Title The effect of Y2O3 and YFeO3 additions on the critical current density of YBCO coated conductors Type P1 Proceeding
  Year 2014 Publication 1-4 Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract The pinning mechanism of MOCVD-grown YBCO coated conductors with Y2O3 precipitates was investigated by angle-resolved transport measurement of Je in a wide range of temperature and magnetic fields. Aside from the Y2O3 nanoprecipitates, a-axis grains and threading dislocation along the c-axis were found in the YBCO layer. The Y2O3 precipitates are less effective pinning centers at lower temperature. The tapes with precipitates show a higher anisotropy with larger J(c) at H parallel to ab than H parallel to c. This behavior was attributed to the preferred alignment of the nanoprecipitates along the ab-plane.
  Address
  Corporate Author Thesis
  Publisher Iop publishing ltd Place of Publication Bristol Editor
  Language Wos (up) 000350818300068 Publication Date 2014-05-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume 507 Series Issue Edition
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access
  Notes eurotapes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:125444 Serial 3577
Permanent link to this record
 

 
Author McCalla, E.; Abakumov, A.; Rousse, G.; Reynaud, M.; Sougrati, M.T.; Budic, B.; Mahmoud, A.; Dominko, R.; Van Tendeloo, G.; Hermann, R.P.; Tarascon, J.M.;
  Title Novel complex stacking of fully-ordered transition metal layers in Li4FeSbO6 materials Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 27 Issue 27 Pages 1699-1708
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract As part of a broad project to explore Li4MM'O-6 materials (with M and M' being selected from a wide variety of metals) as positive electrode materials for Li-ion batteries, the structures of Li4FeSbO6 materials with both stoichiometric and slightly deficient lithium contents are studied here. For lithium content varying from 3.8 to 4.0, the color changes from yellow to black and extra superstructure peaks are seen in the XRD patterns. These extra peaks appear as satellites around the four superstructure peaks affected by the stacking of the transition metal atoms. Refinements of both XRD and neutron scattering patterns show a nearly perfect ordering of Li, Fe, and Sb in the transition metal layers of all samples, although these refinements must take the stacking faults into account in order to extract information about the structure of the TM layers. The structure of the most lithium rich sample, where the satellite superstructure peaks are seen, was determined with the help of HRTEM, XRD, and neutron scattering. The satellites arise due to a new stacking sequence where not all transition metal layers are identical but instead two slightly different compositions stack in an AABB sequence giving a unit cell that is four times larger than normal for such monoclinic layered materials. The more lithium deficient samples are found to contain metal site vacancies based on elemental analysis and Mossbauer spectroscopy results. The significant changes in physical properties are attributed to the presence of these vacancies. This study illustrates the great importance of carefully determining the final compositions in these materials, as very small differences in compositions may have large impacts on structures and properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000350919000032 Publication Date 2015-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 22 Open Access
  Notes Approved Most recent IF: 9.466; 2015 IF: 8.354
  Call Number c:irua:125469 Serial 2373
Permanent link to this record
 

 
Author Struzzi, C.; Erbahar, D.; Scardamaglia, M.; Amati, M.; Gregoratti, L.; Lagos; Van Tendeloo, G.; Snyders, R.; Ewels, C.; Bittencourt, C.
  Title Selective decoration of isolated carbon nanotubes by potassium evaporation : scanning photoemission microscopy and density functional theory Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 3 Issue 3 Pages 2518-2527
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Site selective doping of aligned carbon nanostructures represents a promising approach for their implementation in actual devices. In the present work we report on alkali metals decoration on low density vertically aligned carbon nanotubes, disclosing the possibility of engineering site selective depositions of potassium atoms on the carbon systems. Photoemission measurements were combined with microscopy demonstrating the effective spatial control of alkali deposition. The changes of electronic structures of locally doped carbon regions were studied by exploiting the ability of the scanning photoemission microscopy technique. From the analysis of experimental data supported by theoretical calculations, we show the tuning of the charge transfer from potassium to carbon atoms belonging to neighboring nanotubes or along the same tube structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000350984200011 Publication Date 2014-12-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 6 Open Access
  Notes Approved Most recent IF: 5.256; 2015 IF: 4.696
  Call Number c:irua:125496 Serial 2963
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M.
  Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 28 Issue 28 Pages 025004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos (up) 000351046300010 Publication Date 2014-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.878 Times cited 19 Open Access
  Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325
  Call Number c:irua:125491 Serial 829
Permanent link to this record
 

 
Author Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; Tongay, S.;
  Title Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 15 Issue 15 Pages 1660-1666
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by strain engineering. Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos (up) 000351188000033 Publication Date 2015-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 314 Open Access
  Notes ; This work is supported by Arizona State University, Research Seeding Program, the National Natural Science Foundation of China (91233120), and the National Basic Research Program of China (2011CB921901). Q., Liu acknowledges the support to this work by NSFC (10974037), NBRPC (2010CB934102), and the CAS Strategy Pilot program (XDA 09020300). S. Yang acknowledges financial support from China Postdoctoral Science Foundation (No. 2013M540127). ; Approved Most recent IF: 12.712; 2015 IF: 13.592
  Call Number c:irua:125480 Serial 3758
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
  Title Fano resonances in the conductance of graphene nanoribbons with side gates Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 035444
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The control of side gates on the quantum electron transport in narrow graphene ribbons of different widths and edge types (armchair and zigzag) is investigated. The conductance exhibits Fano resonances with varying side gate potential. Resonant and antiresonant peaks in the conductance can be associated with the eigenstates of a closed system, and these peaks can be accurately fitted with a Fano line shape. The local density of states (LDOS) and the electron current show a specific behavior at these resonances, which depends on the ribbon edge type. In zigzag ribbons, transport is dominated by intervalley scattering, which is reflected in the transmission functions of individual modes. The side gates induce p-n interfaces near the edges at which the LDOS exhibits peaks. Near the resonance points, the electron current flows uniformly through the constriction, while near the antiresonances it creates vortices. In the armchair ribbons the LDOS spreads in areas of high potential, with current flowing near the edges.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000351217900005 Publication Date 2015-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 17 Open Access
  Notes ; This work was supported by the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125422 Serial 1172
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
  Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 151 Issue 151 Pages 85-93
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos (up) 000351237800012 Publication Date 2014-10-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 19 Open Access
  Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
  Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A.
  Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 27 Issue 27 Pages 125701
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (up) 000351294700018 Publication Date 2015-03-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 4 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346
  Call Number c:irua:125460 Serial 2787
Permanent link to this record
 

 
Author Chen, J.-J.; Ke, X.; Van Tendeloo, G.; Meng, J.; Zhou, Y.-B.; Liao, Z.-M.; Yu, D.-P.
  Title Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 5516-5524
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The graphene-metal contact is very important for optimizing the performance of graphene based electronic devices. However, it is difficult to probe the properties of the graphene/metal interface directly via transport measurements in traditional graphene lateral devices, because the dominated transport channel is graphene, not the interface. Here, we employ the Au/graphene/Au vertical and lateral hybrid structure to unveil the metal-graphene interface properties, where the transport is dominated by the charge carriers across the interface. The magnetoresistance (MR) of Au/monolayer graphene/Au and Au/stacked two-layered graphene/Au devices is measured and modulated by gate voltage, demonstrating that the interface is a device. The gate-tunable MR is identified from the graphene lying on the SiO2 substrate and underneath the top metal electrode. Our unique structures couple the in-plane and out-of-plane transport and display linear MR with small amplitude oscillations at low temperatures. Under a magnetic field, the electronic coupling between the graphene edge states and the electrode leads to the appearance of quantum oscillations. Our results not only provide a new pathway to explore the intrinsic transport mechanism at the graphene/metal interface but also open up new vistas of magnetoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (up) 000351372400050 Publication Date 2015-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 3 Open Access
  Notes 246791 Countatoms Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number c:irua:125533 Serial 1931
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
  Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 578 Issue 578 Pages 133-138
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos (up) 000351686500019 Publication Date 2015-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 41 Open Access
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number c:irua:125517 Serial 3626
Permanent link to this record
 

 
Author Zalipaev, V.; Linton, C.M.; Croitoru, M.D.; Vagov, A.
  Title Resonant tunneling and localized states in a graphene monolayer with a mass gap Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 085405
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study tunneling of quasiparticles through potential barriers in a graphene monolayer with the mass gap using a semiclassical (WKB) approach. The main equations are derived in away similar to the WKB theory for the Schrodinger equation, which allows for explicit solutions at all orders. The analog of the classical action is used to distinguish types of possible stationary states in the system. The analysis focuses on the resonant scattering and the hole states localized in the vicinity of a barrier that are often overlooked. The scattering coefficients for the physically interesting limits are obtained by matching the WKB approximation with the known solutions at turning points. The localized states demonstrate unconventional properties and lead to alterations of the single particle density of states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000351773900004 Publication Date 2015-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; M.D.C. acknowledges the Belgian Science Policy (BELSPO Back to Belgium Grant). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125523 Serial 2891
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K.
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 9 Issue 9 Pages 2792-2804
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000351791800055 Publication Date 2015-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess
  Notes 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:125380 c:irua:125380 Serial 87
Permanent link to this record
 

 
Author Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H.
  Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
  Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett
  Volume 417 Issue 417 Pages 49-56
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos (up) 000351799400006 Publication Date 2015-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0012-821X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.409 Times cited 23 Open Access
  Notes Approved Most recent IF: 4.409; 2015 IF: 4.734
  Call Number c:irua:125451 Serial 2539
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 48 Issue 48 Pages 155202
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (up) 000351856600007 Publication Date 2015-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 20 Open Access
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
  Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Shahraki, M.R.; Abedi-Sarvestani, A.; Seyedi, M.S.; Rafiaani Khachak, P.; Nieto-Garibay, A.; Van Passel, S.; Azadi, A.
  Title The perception by pastoralists of the factors influencing the appropriate distribution of livestock in the rangelands of north-east Iran Type A1 Journal article
  Year 2015 Publication The Rangeland Journal Abbreviated Journal
  Volume 37 Issue 2 Pages 191-197
  Keywords A1 Journal article; Economics; Engineering Management (ENM)
  Abstract The distribution of livestock grazing is a key principle of range management. This study examines pastoralists perceptions of the factors that affect the distribution of livestock in the rangelands of the Neqab region of the Kashmar County in north-east Iran. Data were collected from the pastoralists on their perceptions of the managerial, biological and physical factors that influences the distribution of livestock, using both qualitative and quantitative assessments. Results showed that, the perception of the majority of pastoralists was that the distribution of livestock was average or good in the study area. It was perceived that the experience of herders and the size of the rangeland were the main factors influencing the distribution of livestock. Regression analyses showed that it was perceived that managerial factors had a more important role than biological and physical factors in the distribution of livestock and the proper use of the rangelands in north-east Iran.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000351863200007 Publication Date 2015-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:129879 Serial 6234
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
  Title Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation Type A1 Journal article
  Year 2015 Publication Acta biomaterialia Abbreviated Journal Acta Biomater
  Volume 16 Issue 16 Pages 215-222
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.10.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos (up) 000351978600021 Publication Date 2015-02-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 54 Open Access
  Notes Fwo G043110n Approved Most recent IF: 6.319; 2015 IF: 6.025
  Call Number c:irua:124421 Serial 1473
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
  Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 094112
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000352017000002 Publication Date 2015-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 54 Open Access
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author Croitoru, M.D.; Buzdin, A.I.
  Title FFLO-wave-vector lock-in effect in quasi-1D superconductors Type A1 Journal article
  Year 2015 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
  Volume 28 Issue 28 Pages 1305-1308
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the phase transition into the Fulde-Ferrell-Larkin-Ovchinnikov state in high magnetic field in quasi-one dimensional superconductors within the quasi-classical formalism, taking into account the interchain Josephson coupling and the paramagnetic spin splitting. We show that anomalies in the field-direction dependence of the upper critical field when the magnetic field length equals to the FFLO period, previously described in [29], are characterized by the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos (up) 000352085700019 Publication Date 2014-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.18 Times cited 4 Open Access
  Notes ; We thank D. Jerome for useful discussions. We acknowledge the support by the French ANR program “ElectroVortex” and European NanoSC COST Action MP1201. M.D.C. acknowledges the support by the BELSPO Return to Belgium Grant. ; Approved Most recent IF: 1.18; 2015 IF: 0.909
  Call Number c:irua:125540 Serial 1187
Permanent link to this record
 

 
Author Roditchev, D.; Brun, C.; Serrier-Garcia, L.; Cuevas, J.C.; Bessa, V.H.L.; Milošević, M.V.; Debontridder, F.; Stolyarov, V.; Cren, T.
  Title Direct observation of Josephson vortex cores Type A1 Journal article
  Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
  Volume 11 Issue 11 Pages 332-337
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000352163100016 Publication Date 2015-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 22.806 Times cited 102 Open Access
  Notes T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5). Approved Most recent IF: 22.806; 2015 IF: 20.147
  Call Number c:irua:132524 c:irua:132524 Serial 3943
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J.
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
  Volume 71 Issue 71 Pages 127-143
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos (up) 000352166500002 Publication Date 2015-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.032 Times cited 11 Open Access
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA
  Call Number c:irua:124411 Serial 3408
Permanent link to this record
 

 
Author E. Zaghi, A.; Buffière, M.; Koo, J.; Brammertz, G.; Batuk, M.; Verbist, C.; Hadermann, J.; Kim, W.K.; Meuris, M.; Poortmans, J.; Vleugels, J.;
  Title Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatment Type A1 Journal article
  Year 2014 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume Issue Pages 1-7
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline CuInSe2 semiconductors are efficient light absorber materials for thin film solar cell technology, whereas printing is one of the promising low cost and non-vacuum approaches for the fabrication of thin film solar cells. The printed precursors are transformed into a dense polycrystalline CuInSe2 semiconductor film via thermal treatment in ambient selenium atmosphere (selenization). In this study, the effect of the selenium content in high purity mechanically synthesized CuInSex (x = 2, 1.5, 1 or 0.5) alloy precursors on the recrystallization of the CuInSe2 phase during the selenization process was investigated. The nanostructure and phase variation of CuInSex nanopowders were investigated by different characterization techniques. The recrystallization process of the 12 μm thick CuInSex coatings into the CuInSe2 phase during selenization in selenium vapor was investigated via in-situ high temperature X-ray diffraction. The CuInSex precursors with lower selenium content showed a more pronounced phase conversion into CuInSe2 compared to the higher selenium content CuInSex precursors. Moreover, the CuInSex (x = 0.5 and 1) precursor resulted in a denser polycrystalline CuInSe2 semiconductor film with larger crystals. This could be attributed to a more intensive atomic interdiffusion within the CuInSex precursor system compared to a CuInSe2 phase precursor, and the formation of intermediate CuSe and CuSe2 fluxing phases during selenization.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos (up) 000352225900004 Publication Date 2014-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 7 Open Access
  Notes Approved Most recent IF: 1.879; 2014 IF: 1.759
  Call Number c:irua:121330 Serial 834
Permanent link to this record
 

 
Author Oueslati, S.; Brammertz, G.; Buffiere, M.; ElAnzeery, H.; Touayar, O.; Koeble, C.; Bekaert, J.; Meuris, M.; Poortmans, J.
  Title Physical and electrical characterization of high-performance Cu2ZnSnSe4 based thin film solar cells Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 582 Issue 582 Pages 224-228
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report on the electrical, optical and physical properties of Cu2ZnSnSe4 solar cells using an absorber layer fabricated by selenization of sputtered Cu, Zn and Cu10Sn90 multilayers. A maximum active-area conversion efficiency of 10.4% under AM1.5G was measured with a maximum short circuit current density of 39.7 mA/cm(2), an open circuit voltage of 394 mV and a fill factor of 66.4%. We perform electrical and optical characterization using photoluminescence spectroscopy, external quantum efficiency, current-voltage and admittance versus temperature measurements in order to derive information about possible causes for the low open circuit voltage values observed. The main defects derived from these measurements are strong potential fluctuations in the absorber layer as well as a potential barrier of the order of 133 meV at the back side contact. (C) 2014 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos (up) 000352225900048 Publication Date 2014-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 49 Open Access
  Notes ; We would like to acknowledge Tom De Geyter, Greetje Godiers, and Guido Huyberechts from Flamac in Gent for sputtering of the metal layers. AGC is acknowledged for providing substrates. This research is partially funded by the Flemish government, Department Economy, Science and Innovation. ; Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number UA @ lucian @ c:irua:132504 Serial 4225
Permanent link to this record
 

 
Author Bertrand, L.; Schoeeder, S.; Anglos, D.; Breese, M.B.H.; Janssens, K.; Moini, M.; Simon, A.
  Title Mitigation strategies for radiation damage in the analysis of ancient materials Type A1 Journal article
  Year 2015 Publication Trends in analytical chemistry Abbreviated Journal Trac-Trend Anal Chem
  Volume 66 Issue Pages 128-145
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The study of materials in cultural heritage artifacts and micro-samples benefits from diagnostic techniques based on intense radiation sources, such as synchrotrons, ion-beam accelerators and lasers. While most of the corresponding techniques are classified as non-destructive, investigation with photons or charged particles entails a number of fundamental processes that may induce changes in materials. These changes depend on irradiation parameters, properties of materials and environmental factors. In some cases, radiation-induced damage may be detected by visual inspection. When it is not, irradiation may still lead to atomic and molecular changes resulting in immediate or delayed alteration and bias of future analyses. Here we review the effects of radiation reported on a variety of cultural heritage materials and describe the usual practice for assessing short-term and long-term effects. This review aims to raise awareness and encourage subsequent research activities to limit radiation side effects.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000352248200020 Publication Date 2014-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.442 Times cited 35 Open Access
  Notes ; We wish to acknowledge the support of this initiative by the International Atomic Energy Agency. We gratefully thank Professor Manfred Schreiner of the Institute of Natural Sciences and Technology in the Arts (Akademie den bildenden Kunst, Vienna, Austria) for helpful discussions and insights on this work. We thank all colleagues who accepted to have their work reproduced in this review. IPANEMA at Synchrotron SOLEIL, the Hungarian Academy of Science and IESL-FORTH were supported within the Research Infrastructure program CHARISMA of the 7th Framework Programme of the EU (Grant Agreement no. 228330). MM's contribution is based upon work supported by the National Science Foundation under Grant numbers CHE 1241672 and CHE 1440849. We thank Chris McGlinchey and Lauren Klein (Museum of Modern Art, New York, USA) for their critical rereading of the manuscript. ; Approved Most recent IF: 8.442; 2015 IF: 6.472
  Call Number UA @ admin @ c:irua:124627 Serial 5729
Permanent link to this record
 

 
Author Kuopanportti, P.; Orlova, N.V.; Milošević, M.V.
  Title Ground-state multiquantum vortices in rotating two-species superfluids Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
  Volume 91 Issue 91 Pages 043605
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We show numerically that a rotating, harmonically trapped mixture of two Bose-Einstein-condensed superfluids cancontrary to its single-species counterpartcontain a multiply quantized vortex in the ground state of the system. This giant vortex can occur without any accompanying single-quantum vortices, may either be coreless or have an empty core, and can be realized in a Rb87−K41 Bose-Einstein condensate. Our results not only provide a rare example of a stable, solitary multiquantum vortex but also reveal exotic physics stemming from the coexistence of multiple, compositionally distinct condensates in one system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos (up) 000352255200005 Publication Date 2015-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 25 Open Access
  Notes ; This work was supported by the Finnish Cultural Foundation, the Research Foundation – Flanders (FWO), and the Magnus Ehrnrooth Foundation. We thank E. Ruokokoski and T. P. Simula for valuable comments and discussions. ; Approved Most recent IF: 2.925; 2015 IF: 2.808
  Call Number c:irua:124906 Serial 1388
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.;
  Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
  Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 27 Issue 27 Pages 2177-2181
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (up) 000352548900004 Publication Date 2015-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 32 Open Access
  Notes Approved Most recent IF: 19.791; 2015 IF: 17.493
  Call Number c:irua:126002 Serial 3545
Permanent link to this record
 

 
Author Pavlović, S.; Peeters, F.M.
  Title Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 155410
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos (up) 000352591200005 Publication Date 2015-04-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 44 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:132516 Serial 4170
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater
  Volume 5 Issue 5 Pages 1401997
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos (up) 000352708600013 Publication Date 2014-12-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 30 Open Access OpenAccess
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146
  Call Number c:irua:126000 Serial 2994
Permanent link to this record
 

 
Author Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M.
  Title Graphane Type A1 Journal article
  Year 2015 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci
  Volume 5 Issue 5 Pages 255-272
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Atomically thin crystals have recently been the focus of attention, in particular, after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class, the chemically derived graphenes have attracted tremendous interest. It was shown that, although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane' (CH), fluorographene (CF), and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview surveys structural, electronic, magnetic, vibrational, and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well. WIREs Comput Mol Sci 2015, 5:255-272. doi: 10.1002/wcms.1216 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000352862700001 Publication Date 2015-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1759-0876; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 14.016 Times cited 54 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. H. Sahin is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 14.016; 2015 IF: 11.885
  Call Number c:irua:125996 Serial 1366
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O.
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 3 Issue 3 Pages 3971-3979
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000352870400018 Publication Date 2015-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 19 Open Access
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696
  Call Number UA @ lucian @ c:irua:132575 Serial 4245
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: