toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Decker, J.; Folens, K.; De Clercq, J.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  url
doi  openurl
  Title Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption Type A1 Journal article
  Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume (up) 335 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO3. Three adsorption/desorption cycles were performed. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000402948600001 Publication Date 2017-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 35 Open Access OpenAccess  
  Notes ; The authors acknowledge the AUGent/UGent for financial support, Grant Number DEF12/AOP/008 fund IV1. ; Approved Most recent IF: 6.065  
  Call Number UA @ lucian @ c:irua:144153 Serial 4685  
Permanent link to this record
 

 
Author Schryvers, D.; Tirry, W.; Yang, Z.Q.; pdf  doi
openurl 
  Title Measuring strain fields and concentration gradients around Ni4Ti3 precipitates Type A1 Journal article
  Year 2006 Publication Materials science and engineering A: structural materials properties microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume (up) 438 Issue Pages 485-488  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000242900900105 Publication Date 2006-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 35 Open Access  
  Notes Goa Approved Most recent IF: 3.094; 2006 IF: 1.490  
  Call Number UA @ lucian @ c:irua:62329 Serial 1969  
Permanent link to this record
 

 
Author Coghe, F.; Tirry, W.; Rabet, L.; Schryvers, D.; Van Houtte, P. pdf  doi
openurl 
  Title Importance of twinning in static and dynamic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure Type A1 Journal article
  Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume (up) 537 Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Whereas deformation twinning is known to be an important deformation mechanism for hexagonal materials like magnesium and pure titanium, so far almost no literature exists on the twinning behaviour of the Ti-6Al-4V alloy. In this work it was shown that the activation of twinning as a deformation mechanism could have a pronounced effect on the mechanical behaviour of the Ti-6Al-4V alloy. This effect is even more pronounced under dynamic loading conditions. Transmission electron microscopy showed that only the {1 0 1 2}{1 0 1 1} tensile twin system was activated under certain loading conditions. Light-optical microscopy and electron backscatter diffraction data were afterwards used to experimentally determine the twin fractions. The importance of twinning for the texture evolution was also studied. It was shown that even small twin fractions can lead to distinct texture features, especially due to the discrete reorientation of the c-axes. The experimental results were compared to simulated results that were obtained with a viscoplastic self-consistent crystal plasticity code, after experimental validation that twinning can be reliably modelled as a unidirectional slip system. Although good agreement was obtained for the experimental and simulated stress-strain curves, the simulated results concerning twinning correlated well only on a qualitative basis as the simulated twin fractions were systematically higher than the experimental fractions. This seems to strengthen the hypothesis made by other research groups that complete grains might reorient by twinning. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000301473300001 Publication Date 2011-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.094; 2012 IF: 2.108  
  Call Number UA @ lucian @ c:irua:97818 Serial 1565  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: