toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbueken, A.; Paulus, G.; Van de Vyver, F.; Verpooten, G.; de Broe, M.; Van Grieken, R. openurl 
  Title LAMMA : calibration and application to nephrotoxicology studies Type P3 Proceeding
  Year 1983 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:117491 Serial 8149  
Permanent link to this record
 

 
Author Verbueken, A.H.; Paulus, G.J.; Van de Vyver, F.L.; Verpooten, G.A.; Visser, W.J.; de Broe, M.E.; Van Grieken, R.E. openurl 
  Title LAMMA in nephrotoxicity studies Type P3 Proceeding
  Year 1984 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:117492 Serial 8150  
Permanent link to this record
 

 
Author Verbueken, A.H.; Van de Vyver, F.L.; Paulus, G.J.; Visser, W.J.; Verpooten, G.A.; de Broe, M.E.; Van Grieken, R.E. openurl 
  Title Laser microprobe mass analysis (LAMMA) in nephrological investigations Type H3 Book chapter
  Year 1984 Publication Abbreviated Journal  
  Volume (up) Issue Pages 375-382 T2 - Trace element analytical chemistry in  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:117493 Serial 8156  
Permanent link to this record
 

 
Author Jacobs, W.; Floren, E.; Luyckx, D.; Bueken, P.; van Beeck, J.; Van Grieken, R. isbn  openurl
  Title Mapping of toxic vapours on board of tankers Type P3 Proceeding
  Year 2011 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords P3 Proceeding; Economics; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-905040-85-8 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:89790 Serial 8202  
Permanent link to this record
 

 
Author Kollarahithlu, S.C.; Sathiyamoorthy, S.; Thiruvottriyur Shanmugam, S.; De Wael, K.; Das, J.; Veluswamy, P. isbn  openurl
  Title Foodborne outbreaks : sources and mode of transmission of foodborne pathogenic microorganisms Type H1 Book chapter
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 93-104 T2 - Global food safety : microbial interve  
  Keywords H1 Book chapter; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The foodborne pathogens and microorganisms have played a prevalent role in the ebb and flow of the economy worldwide. The increasing population has strained the food processing industry to produce food in large quantity, which in turn has affected the quality of food. To curb this issue, there is immense pressure to produce and maintain quality food within a short time frame. Hence, high throughput technology is used to determine and timely assess the safety and hygiene of food. Further, the revolution of the food industry has also seen an upsurge of new pathogens and microorganisms, thereby increasing the risk of exposure towards rarest diseases to a larger population. This chapter sheds light on the different types of foodborne pathogens affecting the food industry and its social impact. It further emphasizes the safety measures to be taken on the prevention of the disease from the farm to the processing industries and in turn to the household.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-003-28314-0 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200591 Serial 9039  
Permanent link to this record
 

 
Author De Luca, F.; Abate, S.; Bogaerts, A.; Centi, G. url  openurl
  Title Electrified CO2 conversion : integrating experimental, computational, and process simulation methods for sustainable chemical synthesis Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume (up) Issue Pages xv, 152 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, the burning of fossil fuels, particularly petroleum, natural gas, and coal, meets the rising need for power and fuels for automobiles and industries. This has given rise to ecological and climate challenges. This thesis explores these issues from three distinct perspectives: (i) experimental, (ii) computational, and (iii) process simulation, with a focus on studying CO2 as an alternative and economically viable raw material. Firstly, the experimental study is focused on the synthesis, characterization, and testing of novel catalysts for electroreduction of CO2 and oxalic acid, an intermediate product of CO2. Electrocatalysts based on Cu supported by citrus (orange and lemon) peel biomass are prepared. These catalysts exhibit activity in the electrochemical reduction of CO2, emphasizing the effectiveness of biomasses, particularly orange peels, as environmentally friendly precursors for sustainable and efficient electrocatalysts. In addition, graphitic carbon nitrides/TiO2 nanotubes (g-C3N4/TiNT) composites are prepared for the electrocatalytic reduction of oxalic acid to glycolic acid, revealing superior electrocatalytic properties compared to pristine TiNT. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electronic microscopy were performed for all the prepared electrocatalysts. Delving into the reduction of CO2 on Cu catalysts, a computational study about the synthesis of methanol on Cu(111) surface is performed by using the Vienna Ab initio Simulation Package. A systematic study is carried out to define the activation energies of the elementary reactions by using mGGA DF. Consequently, it is shown that the rate-controlling step is CH3O* hydrogenation and the formate pathway on Cu(111) proceeds through the HCOOH* intermediate. Finally, the process simulation, performed by using the software Aspen Plus 11 from AspenTech Inc., is based on the comparison of a catalytic (oxidation of ethylene glycol) and an electrocatalytic process (CO2 electroreduction chain) to synthesize glycolic acid. An economic analysis of the operational and investment costs reveals that the catalytic process is more cost-effective due to the current instability of electrocatalysts and proton exchange membranes, resulting in increased maintenance costs and, consequently, higher prices for the product.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205262 Serial 9147  
Permanent link to this record
 

 
Author Long, Y.; Wang, X.; Zhang, H.; Wang, K.; Ong, W.-L.; Bogaerts, A.; Li, K.; Lu, C.; Li, X.; Yan, J.; Tu, X.; Zhang, H. url  doi
openurl 
  Title Plasma chemical looping : unlocking high-efficiency CO₂ conversion to clean CO at mild temperatures Type A1 Journal article
  Year 2024 Publication JACS Au Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a plasma chemical looping CO2 splitting (PCLCS) approach that enables highly efficient CO2 conversion into O-2-free CO at mild temperatures. PCLCS achieves an impressive 84% CO2 conversion and a 1.3 mmol g(-1) CO yield, with no O-2 detected. Crucially, this strategy significantly lowers the temperature required for conventional chemical looping processes from 650 to 1000 degrees C to only 320 degrees C, demonstrating a robust synergy between plasma and the Ce0.7Zr0.3O2 oxygen carrier (OC). Systematic experiments and density functional theory (DFT) calculations unveil the pivotal role of plasma in activating and partially decomposing CO2, yielding a mixture of CO, O-2/O, and electronically/vibrationally excited CO2*. Notably, these excited CO2* species then efficiently decompose over the oxygen vacancies of the OCs, with a substantially reduced activation barrier (0.86 eV) compared to ground-state CO2 (1.63 eV), contributing to the synergy. This work offers a promising and energy-efficient pathway for producing O-2-free CO from inert CO2 through the tailored interplay of plasma and OCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001225139200001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205970 Serial 9166  
Permanent link to this record
 

 
Author Lu, Q. url  openurl
  Title Precipitation behavior and heat resistance properties of Al-Cu-Mg-Ag-(Si) alloy Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume (up) Issue Pages VIII, 212 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract With the rapid increase in the speed of new-generation aerospace vehicles, conventional heat-resistant aluminum alloys cannot meet the long-term service of the equipment. Therefore, the development of new high-strength heat-resistant aluminum alloys is of great strategic for the sustainable and high-quality development of industries. Al-Cu-Mg-Ag alloy is an age-hardenable heat-resistant aluminum alloy and has high strength and heat resistance. The addition of alloying elements such as Si and Sc to Al-Cu-Mg-Ag alloy introduces a competitive relationship among the σ-Al5Cu6Mg2, θ′-Al2Cu, and Ω phases. Therefore, a systematic investigation of precipitation behavior and heat resistance of Al-Cu-Mg-Ag-(Si) is essential for guiding the design of high-strength heat-resistant aluminum alloys. Combined characterization testing methods such as scanning electron microscopy, transmission electron microscopy, atom probe tomography, microhardness testing, and tensile testing with simulation calculation methods such as calculation of phase diagram, first-principles calculations, and Ab initio molecular dynamics, the effects of heat treatment processes and element content on the precipitation behavior, mechanical properties, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys were systematically investigated. Furthermore, a multiple interface segregation structure was constructed at the θ′/Al interface, and a new Al-Cu-Mg-Ag-Si-Sc alloy with synergistically improved strength and heat resistance was developed. The main conclusions are as follows: (1) Based on the Kampmann-Wagner-Numerical theory, the relationship between the coarsening rate of the Ω phase and the aging process was analyzed, revealing for the first time that the critical size of Ω phase ( ) under thermal exposure temperature was the key factor determining the coarsening rate of Ω phase during long time thermal exposure heat treatment. After artificial ageing, when the size of Ω phase was smaller than the critical size , the dissolution of smaller Ω phase leaded to a rapid decrease in the number density of Ω phases, thereby reducing the heat resistance of the alloy. When the size of Ω phase was greater than or equal to the critical size , the coarsening rate of Ω phase was consistent, but a larger initial size would result in a larger final size after long-term thermal exposure. Therefore, the closer the size of Ω phase in the alloy is to the critical size under heat exposure temperature, the better the heat resistance of the alloy. (2) A concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed, and based on this concept, a multiple interface segregation structure containing the C/L-AlMgSiCu interfacial phase, newly discovered χ-AgMg interfacial phase, and Sc segregation layer was successfully constructed at the θ′/Al interface. The existence of the multiple interface segregation structure ensured that the designed Al-Cu-Mg-Ag-Si-Sc alloy maintains a yield strength of 400 MPa after thermal exposure at 200 C for 100 h, with a strength retention rate of 97%, creating a new record for the synergistic improvement of strength and heat resistance in aluminum alloys. In addition, combining transmission electron microscopy ex-situ/in-situ characterization with first-principles calculations, it is shown that the χ-AgMg interface phase will be destroyed due to the diffusion of the outer Ag layer during thermal exposure, and gradually dissolve into the matrix, but it can still delay the coarsening behavior of θ′-Al2Cu phase. (3) The criteria for determining whether Ω phase can precipitate are updated in Al-Cu-Mg-Ag-Si alloys with low Mg/Si ratio based on phase diagram thermodynamic calculations and multi-scale structural characterization. When W(Mg)/W(Si) > 1.4 and X(Ag)/X(Mgexcess) > 1, Ω phase can precipitate in Al-Cu-Mg-Ag-Si alloys, where X(Mgexcess) represents the atomic percentage of residual Mg elements after the formation of the AlMgSiCu quaternary precipitate phase C/L phase in the supersaturated solid solution, and the W(Mg) is the mass fraction of Mg in the supersaturated solid solution before artificial ageing. (4) The effects of alloy element content on precipitation behavior and heat resistance of Al-Cu-Mg-Ag-Si alloys were systematically analyzed. Critical conditions for the precipitation of σ-Al5Cu6Mg2 and Ω phase in Al-Cu-Mg-Ag-Si alloys are revealed. Based on calculation of phase diagram results, the conditions for precipitating σ-Al5Cu6Mg2 phase in the alloy are: ① W(Mg)/W(Si) > 1.8; ② W(Cu) > 2.7W(Mg) – 5W(Si). When W(Mg)/W(Si) < 1.8, the alloy is mainly precipitated with C/L/Q′-AlMgSiCu. When W(Cu) < 2.7W(Mg) – 5W(Si), the alloy will generate GPB zone. In addition, W(Ag)/W(Si) > 4 is the critical condition which the Ω phase can the main precipitates in Al-Cu-Mg-Ag-Si alloys. Furthermore, the correlation between precipitate types and heat resistance was summarized, showing that Al-Cu-Mg-Ag-(Si) alloys with Ω phase as the main strengthening phase are more suitable for the preparation of structures with short service time but high temperature, while Al-Cu-Mg-Ag-(Si) alloys with low Mg content and multiple segregation structures are more suitable for structures requiring long-term service at medium to high temperatures. This study, for the first time, combines calculation of phase diagram with multi-scale microstructure characterization, systematically unraveling the effects of element content on precipitation behavior, strength, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys. In addition, a concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed to synergistically improve alloy strength and heat resistance. This work provides theoretical guidance for optimizing the composition and processing of Al-Cu-Mg-Ag-(Si) alloy and regulating the microstructure. Furthermore, it also offers new ideas and theoretical guidance for the development of novel high-strength heat-resistant alloys in other systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206180 Serial 9167  
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.; Hauchecorne, B.; Blust, R.; Lenaerts, S. openurl 
  Title Diatom silica-titania materials for photocatalytic air purification Type A2 Journal article
  Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume (up) 1 Issue 1 Pages 141-147  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:105334 Serial 5943  
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year 2018 Publication ACS applied energy materials Abbreviated Journal  
  Volume (up) 1 Issue 4 Pages 1549-1558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458705400020 Publication Date 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157642 Serial 8487  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express  
  Volume (up) 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y. url  doi
openurl 
  Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
  Year 2020 Publication Physical review research Abbreviated Journal  
  Volume (up) 2 Issue 1 Pages 013329  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602698100008 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access  
  Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175138 Serial 6694  
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C. doi  openurl
  Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
  Year 2020 Publication JPhys Energy Abbreviated Journal  
  Volume (up) 2 Issue 3 Pages 032006  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569868600001 Publication Date 2020-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited Open Access  
  Notes Approved Most recent IF: 6.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:193748 Serial 7399  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D. doi  openurl
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year 2019 Publication ACS applied energy materials Abbreviated Journal  
  Volume (up) 2 Issue 2 Pages 1251-1258  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948900037 Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193759 Serial 7414  
Permanent link to this record
 

 
Author Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van Tendeloo, G.; Wang, J.; Wu, T.; url  doi
openurl 
  Title Nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume (up) 3 Issue 4 Pages 041027-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the unconventional bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000328862400001 Publication Date 2013-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 77 Open Access  
  Notes FWO;FP7;IFOX; Countatoms; Hercules Approved Most recent IF: 12.789; 2013 IF: 8.463  
  Call Number UA @ lucian @ c:irua:112524 Serial 2365  
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Flahaut, E.; Van Tendeloo, G.; Lucas, A.A.; Lambin, P. pdf  doi
openurl 
  Title Rings of double-walled carbon nanotube bundles Type A1 Journal article
  Year 2003 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 3 Issue 5 Pages 685-689  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000183040100025 Publication Date 2003-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 59 Open Access  
  Notes Approved Most recent IF: 12.712; 2003 IF: 6.144  
  Call Number UA @ lucian @ c:irua:54853 Serial 2908  
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O. doi  openurl
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume (up) 3 Issue 3 Pages 3971-3979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352870400018 Publication Date 2015-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 19 Open Access  
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696  
  Call Number UA @ lucian @ c:irua:132575 Serial 4245  
Permanent link to this record
 

 
Author Shuhui Sun, Gaixia Zhang, Nicolas Gauquelin, Ning Chen, Jigang Zhou, Songlan Yang, Weifeng Chen, Xiangbo Meng, Dongsheng Geng, Mohammad N. Banis, Ruying Li, Siyu Ye, Shanna Knights, Gianluigi A. Botton, Tsun-Kong Sham & Xueliang Sun url  doi
openurl 
  Title Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition Type A1 Journal Article
  Year 2013 Publication Scientific Reports Abbreviated Journal  
  Volume (up) 3 Issue Pages 1775  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and

automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize

their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt

atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the

capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle.

The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the

state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the

low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the

excellent performance. This work is anticipated to form the basis for the exploration of a next generation of

highly efficient single-atom catalysts for various applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318334300004 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 345 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4543  
Permanent link to this record
 

 
Author Van Eynde, E.; Hu, Z.-Y.; Tytgat, T.; Verbruggen, S.W.; Watte, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S. doi  openurl
  Title Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources Type A1 Journal article
  Year 2016 Publication Environmental science : nano Abbreviated Journal Environ Sci-Nano  
  Volume (up) 3 Issue 5 Pages 1052-1061  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a green, biological production route for silica-titania photocatalysts using diatom microalgae. Diatoms are single-celled, eukaryotic microalgae (2-2000 mu m) that self-assemble soluble silicon (Si(OH)(4)) into intricate silica cell walls, called frustules. These diatom frustules are formed under ambient conditions and consist of hydrated silica with specific 3D morphologies and micro-meso or macroporosity. A remarkable characteristic of diatoms is their ability to bioaccumulate soluble titanium from cell culture medium and incorporate them into their nanostructured silica cell wall. Controlled cultivation of the diatom Pinnularia sp. on soluble titanium in a batch process resulted in the biological immobilisation of titanium dioxide in the porous 3D architecture of the frustules. Six different titanium sources are tested. The silica-titania frustules were isolated by treating the harvested Pinnularia cells with nitric acid (65%) or by high temperature treatment. Thermal annealing converted the amorphous titania into crystalline titania. The produced silica-titania material is evaluated towards photocatalytic activity for acetaldehyde (C2H4O) abatement. Frustules cultivated with TiBaldH showed the highest photocatalytic performance. Comparison of the photocatalytic activity with P25 reveals that P25 has a 4 fold higher photocatalytic activity, but when photocatalytic activity is normalized for titania content, the frustules show double activity. Further material characterization (morphology, crystallinity, surface area and elemental distribution) of the TiBaldH silica-titania frustules provides additional insight into their structure-activity relationship. These natural biosilicatitania materials have excellent properties for photocatalytic purposes, including high surface area (108 m(2) g(-1)) and good porosity, and show reliable immobilization of TiO2 in the ordered structure of the diatom frustule.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000385257900011 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-8153; 2051-8161 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.047 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 6.047  
  Call Number UA @ lucian @ c:irua:144751 Serial 4644  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 4 Issue 19 Pages 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825  
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G. pdf  url
doi  openurl
  Title Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
  Year 2016 Publication APL materials Abbreviated Journal Apl Mater  
  Volume (up) 4 Issue 4 Pages 061101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379042400002 Publication Date 2016-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 19 Open Access  
  Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335  
  Call Number c:irua:133785 Serial 4077  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K. url  doi
openurl 
  Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
  Year 2016 Publication Chemosensors Abbreviated Journal  
  Volume (up) 4 Issue 3 Pages 16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382480000006 Publication Date 2016-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:135411 Serial 5886  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S. url  doi
openurl 
  Title Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (up) 4 Issue Pages 56200-56206  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatoms are unicellular microalgae that self-assemble an intricate porous silica cell wall, called frustule. Diatom frustules possess a unique combination of physical and chemical properties (chemical inertness, high mechanical strength, large surface area, low density, good porosity and highly ordered features on the nano-to-micro scale) making diatom frustules suited for many nanotechnological applications. For most proposed applications the organic material covering the frustules needs to be removed. In this paper we investigate the effect of different frustule cleaning methods (drying, autoclavation, SDS/EDTA treatment, H2O2 treatment and HNO3 treatment) and subsequent heat treatment at different temperatures (105 °C, 350 °C, 550 °C and 750 °C) on the material characteristics of the diatom Pinnularia sp. Material characteristics under study are morphology, surface area, pore size, elemental composition and organic content. The cleaned Pinnularia frustules are subsequently investigated as adsorbents to remove methylene blue (MB) from aqueous solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344997800060 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ admin @ c:irua:121377 Serial 5945  
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S. pdf  url
doi  openurl
  Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume (up) 4 Issue 2 Pages 026001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000513551200007 Publication Date 2020-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 13 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number EMAT @ emat @c:irua:167787 Serial 6376  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume (up) 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.; doi  openurl
  Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 5 Issue Pages 3252  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332666700010 Publication Date 2014-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 806 Open Access  
  Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:119247 Serial 2192  
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H. url  doi
openurl 
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal  
  Volume (up) 5 Issue 1 Pages 49-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551499400001 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171225 Serial 6486  
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B. pdf  doi
openurl 
  Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
  Year 2023 Publication ACS applied electronic materials Abbreviated Journal  
  Volume (up) 5 Issue 11 Pages 5852-5863  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001096792500001 Publication Date 2023-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201198 Serial 9026  
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C. pdf  url
doi  openurl
  Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 6 Issue 24 Pages 14991-14998  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000345458200051 Publication Date 2014-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess  
  Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:122227 Serial 169  
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.; Jacob, W.; Lakiere, F.; van Daele, A.; Silaev, E.; Kaplun, L. doi  openurl
  Title Characterization of double structure tabular microcrystals of silver halide emulsions by means of electron energy-loss spectroscopy, zero-loss electron spectroscopic imaging and energy dispersive X-ray microanalysis Type A1 Journal article
  Year 1995 Publication Microscopy, microanalysis, microstructures Abbreviated Journal  
  Volume (up) 6 Issue 1 Pages 79-88  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ivry Editor  
  Language Wos A1995QY30300008 Publication Date 2003-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1154-2799; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:8457 Serial 322  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: