|   | 
Details
   web
Records
Author Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E.
Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 21 Issue 9 Pages 2000-2001
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000265781000036 Publication Date 2009-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 4 Open Access
Notes Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:77055 Serial 411
Permanent link to this record
 

 
Author Caignaert, V.; Abakumov, A.M.; Pelloquin, D.; Pralong, V.; Maignan, A.; Van Tendeloo, G.; Raveau, B.
Title A new mixed-valence ferrite with a cubic structure, YBaFe4O7: spin-glass-like behavior Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 21 Issue 6 Pages 1116-1122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new mixed-valence ferrite, YBaFe4O7, has been synthesized. Its unique cubic structure, with a = 8.9595(2) Å, is closely related to that of the hexagonal 114 oxides YBaCo4O7 and CaBaFe4O7. It consists of corner-sharing FeO4 tetrahedra, forming triangular and kagome layers parallel to (111)C. In fact, the YBaFe4O7 and CaBaFe4O7 structures can be described as two different ccc and chch close packings of [BaO3]∞ and [O4]∞ layers, respectively, whose tetrahedral cavities are occupied by Fe2+/Fe3+ cations. The local structure of YBaFe4O7 is characterized by a large amount of stacking faults originating from the presence of hexagonal layers in the ccc cubic close-packed YBaFe4O7 structure. In this way, they belong to the large family of spinels and hexagonal ferrites studied for their magnetic properties. Differently from all the ferrites and especially from CaBaFe4O7, which are ferrimagnetic, YBaFe4O7 is an insulating spin glass with Tg = 50 K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000264310900019 Publication Date 2009-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:76432 Serial 2325
Permanent link to this record
 

 
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J.
Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (down) 21 Issue 6 Pages 3327-3338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459584900049 Publication Date 2019-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 5 Open Access OpenAccess
Notes ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:158625 Serial 5244
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Gutnikova, O.Y.; Drozhzhin, O.A.; Leonova, L.S.; Dobrovolsky, Y.A.; Istomin, S.Y.; Van Tendeloo, G.; Antipov, E.V.
Title Superspace description, crystal structures, and electric conductiof the Ba4In6-xMgxO13-x/2 solid solutions Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 20 Issue 13 Pages 4457-4467
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000257279200041 Publication Date 2008-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 15 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:70141 Serial 3383
Permanent link to this record
 

 
Author d' Hondt, H.; Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Van Tendeloo, G.
Title Tetrahedral chain order in the Sr2Fe2O5 brownmillerite Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 20 Issue 22 Pages 7188-7194
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Sr2Fe2O5 brownmillerite has been investigated using electron diffraction and high resolution electron microscopy. The Sr2Fe2O5 structure demonstrates two-dimensional order: the tetrahedral chains with two mirror-related configurations (L and R) are arranged within the tetrahedral layers according to the −L−R−L−R− sequence, and the layers themselves are displaced with respect to each other over 1/2[111] or 1/2[11] vectors of the brownmillerite unit cell, resulting in different ordered stacking variants. A unified superspace model is constructed for ordered stacking sequences in brownmillerites based on the average brownmillerite structure with a = 5.5298(4)Å, b = 15.5875(12)Å, c = 5.6687(4)Å, and (3 + 1)-dimensional superspace group I2/m(0βγ)0s, q = βb* + γc*, 0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000261002200039 Publication Date 2008-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 64 Open Access
Notes Iap Vi Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:72945 Serial 3511
Permanent link to this record
 

 
Author Van Tendeloo, G.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V.
Title Advanced electron microscopy and its possibilities to solve complex structures: application to transition metal oxides Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume (down) 19 Issue 18 Pages 2660-2670
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Design and optimization of materials properties can only be performed through a thorough knowledge of the structure of the compound. In this feature article we illustrate the possibilities of advanced electron microscopy in materials science and solid state chemistry. The different techniques are briefly discussed and several examples are given where the structures of complex oxides, often with a modulated structure, have been solved using electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265740600002 Publication Date 2009-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77065 Serial 68
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y.
Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume (down) 19 Issue 52 Pages 17860-17870
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000328531000028 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 5 Open Access
Notes Approved Most recent IF: 5.317; 2013 IF: 5.696
Call Number UA @ lucian @ c:irua:113697 Serial 3064
Permanent link to this record
 

 
Author Mandal, T.K.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Croft, M.; Greenblatt, M.
Title Synthesis, crystal structure, and magnetic properties of Srl.31Co0.63Mn0.3703: a reivative of the incommensurate composite hexagonal perovskite structure Type A1 Journal article
Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 19 Issue 25 Pages 6158-6167
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000251422000019 Publication Date 2007-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 5 Open Access
Notes Approved Most recent IF: 9.466; 2007 IF: 4.883
Call Number UA @ lucian @ c:irua:67597 Serial 3449
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Kovba, M.L.; Skolis, Y.Y.; Mudretsova, S.N.; Antipov, E.V.; Volkova, O.S.; Vasiliev, A.N.; Tristan, N.; Klingeler, R.; Büchner, B.
Title [SrF0.8(OH)0.2]2.526[Mn6O12]: columnar rock-salt fragments inside the todorokite-type tunnel structure Type A1 Journal article
Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 19 Issue 5 Pages 1181-1189
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000244467800035 Publication Date 2007-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Iap V-1 Approved Most recent IF: 9.466; 2007 IF: 4.883
Call Number UA @ lucian @ c:irua:62525 Serial 3561
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Gillie, L.J.; Martin, C.; Hervieu, M.
Title Coupled cation and charge ordering in the CaMn306 tunnel structure Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 18 Issue 23 Pages 5530-5536
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000241808600021 Publication Date 2006-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:61374 Serial 534
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume (down) 18 Issue 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author Karakulina, O.M.; Demortière, A.; Dachraoui, W.; Abakumov, A.M.; Hadermann, J.
Title In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume (down) 18 Issue 10 Pages 6286-6291
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that changes in the unit cell structure of lithium battery cathode materials during electrochemical cycling in liquid electrolyte can be determined for particles of just a few hundred nanometers in size using in situ transmission electron microscopy (TEM). The atomic coordinates, site occupancies (including lithium occupancy), and cell parameters of the materials can all be reliably quantified. This was achieved using electron diffraction tomography (EDT) in a sealed electrochemical cell with conventional liquid electrolyte (LP30) and LiFePO4 crystals, which have a well-documented charged structure to use as reference. In situ EDT in a liquid environment cell provides a viable alternative to in situ X-ray and neutron diffraction experiments due to the more local character of TEM, allowing for single crystal diffraction data to be obtained from multiphased powder samples and from submicrometer- to nanometer-sized particles. EDT is the first in situ TEM technique to provide information at the unit cell level in the liquid environment of a commercial TEM electrochemical cell. Its application to a wide range of electrochemical experiments in liquid environment cells and diverse types of crystalline materials can be envisaged.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447355400024 Publication Date 2018-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access Not_Open_Access: Available from 08.09.2019
Notes O.M. Karakulina, A.M. Abakumov and J. Hadermann acknowledge support from FWO under grant G040116N. A. Demortière wants to thank the French network on the electrochemical energy storage (RS2E), the Store-Ex Labex, for the financial support. Finally, the Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for funding. Approved Most recent IF: 12.712
Call Number EMAT @ emat @c:irua:154750 Serial 5063
Permanent link to this record
 

 
Author Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V.
Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume (down) 17 Issue 20 Pages 5719-5726
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000290216000028 Publication Date 2011-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 17 Open Access
Notes Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:89773 Serial 2981
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; d' Hondt, H.; Kalyuzhnaya, A.S.; Rozova, M.G.; Markina, M.M.; Mikheev, M.G.; Tristan, N.; Klingeler, R.; Büchner, B.; Antipov, E.V.
Title Synthesis and crystal structure of the Sr2Al1.07Mn0.93O5 brownmillerite Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume (down) 17 Issue 7 Pages 692-698
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000244085100016 Publication Date 2006-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 31 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62061 Serial 3430
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; Lobanov, M.V.; Greenblatt, M.; Croft, M.; Tsiper, E.V.; Llobet, A.; Lokshin, K.A.; Zhao, Y.
Title Synthesis, cation ordering, and magnetic properties of the (Sb1-xPbx)2(Mn1-ySby)O4 solid solutions with the Sb2MnO4-type structure Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 17 Issue Pages 1123-1134
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000227421300029 Publication Date 2005-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes Iap V-1 Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:51440 Serial 3446
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G.
Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 17 Issue 11 Pages 3004-3011
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000229656000030 Publication Date 2005-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:59053 Serial 3554
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Lomakov, M.V.; Istomin, S.Y.; Antipov, E.V.
Title Transmission electron microscopic study of the defect structure in Sr4Fe6O12+\delta compounds with variable oxygen content Type A1 Journal article
Year 2005 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume (down) 17 Issue Pages 4717-4726
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231742600024 Publication Date 2005-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:54772 Serial 3703
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Pardo, J.A.; Santiso, J.
Title Structure and microstructure of epitaxial Sr4Fe6O13-\delta films on SrTiO3 Type A1 Journal article
Year 2004 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume (down) 16 Issue Pages 2578-2584
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure and the microstructure of epitaxial Sr4Fe6O13+/-delta thin films grown on a single-crystal SrTiO3 substrate by PLD have been investigated. A combination of electron diffraction and high-resolution microscopy allows us to refine the structure and to identify an incommensurate modulation in the Sr4Fe6O13+/-delta films. The incommensurate structure (q = alphaa(m)* approximate to 0.39alpha(m)*, superspace group Xmmm(alpha00)0s0) can be interpreted as an oxygen-deficient modification in the Fe2O2.5 double layers. Moreover, it is shown that the experimentally determined a component of the modulation can be used consistently to estimate the local oxygen content in the Sr4Fe6O13+/-delta films. The compound composition can therefore be described as Sr4Fe6O12+2alpha and the value alpha = 0.39 corresponds to a Sr4Fe6O12.78 composition. The misfit stress along the Sr4Fe6O13+/-delta/SrTiO3 interface is accommodated via both elastic deformation and inelastic mechanisms (misfit dislocations and 90degrees rotation twins). The present results also suggest the existence of SrFeO3 perovskite in the Sr4Fe6O13+/-delta films.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000222252300011 Publication Date 2004-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:54770 Serial 3286
Permanent link to this record
 

 
Author Pearce, P.E.; Perez, A.J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A.M.; Van Tendeloo, G.; Doublet, M.-L.; Tarascon, J.-M.
Title Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 Type A1 Journal article
Year 2017 Publication Nature materials Abbreviated Journal Nat Mater
Volume (down) 16 Issue 5 Pages 580-586
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g(-1). In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a beta-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e(-) per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O-2)(n-) redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, beta-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li-0, as equivalently observed in the layered alpha-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400004200018 Publication Date 2017-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited Open Access Not_Open_Access
Notes The authors thank Q. Jacquet for fruitful discussions and V. Pomjakushin for his valuable help in neutron diffraction experiments. This work is based on experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. E.M. acknowledges financial support from the Fonds de Recherche du Quebec-Nature et Technologies. Approved Most recent IF: 39.737
Call Number EMAT @ emat @c:irua:147502 Serial 4773
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.
Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 15 Issue Pages 189-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000180368000029 Publication Date 2003-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:40348 Serial 123
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V.
Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume (down) 15 Issue 46 Pages 4899-4905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000233439300005 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:56069 Serial 3424
Permanent link to this record
 

 
Author Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. .; Vezin, H.; Laisa, C.P.; Prakash, A.S.; Gonbeau, D.; Van Tendeloo, G.; Tarascon, J.M.
Title Origin of voltage decay in high-capacity layered oxide electrodes Type A1 Journal article
Year 2015 Publication Nature materials Abbreviated Journal Nat Mater
Volume (down) 14 Issue 14 Pages 230-238
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than todays commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the chargedischarge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000348600200024 Publication Date 2014-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 395 Open Access
Notes 246791 Countatoms; 312483 Esteem2; esteem2_ta Approved Most recent IF: 39.737; 2015 IF: 36.503
Call Number c:irua:132555 c:irua:132555 Serial 2528
Permanent link to this record
 

 
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G.
Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
Year 2014 Publication Nature materials Abbreviated Journal Nat Mater
Volume (down) 13 Issue 3 Pages 216-217
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331945200002 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 5 Open Access
Notes Approved Most recent IF: 39.737; 2014 IF: 36.503
Call Number UA @ lucian @ c:irua:114579 Serial 2270
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J.
Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume (down) 12 Issue 13 Pages 2269-18
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000824547500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:189591 Serial 7098
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.;
Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol
Volume (down) 11 Issue 11 Pages 825-833
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000354559600004 Publication Date 2015-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.72 Times cited 62 Open Access
Notes Approved Most recent IF: 5.72; 2015 IF: 6.155
Call Number c:irua:126351 Serial 3838
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Local structure of perovskite-based “Pb2Fe2O5 Type A1 Journal article
Year 2008 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume (down) 10 Issue 4 Pages 382-389
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000256200200003 Publication Date 2008-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 29 Open Access
Notes Approved Most recent IF: 1.811; 2008 IF: 1.742
Call Number UA @ lucian @ c:irua:69289 Serial 1832
Permanent link to this record
 

 
Author Altantzis, T.; Coutino-Gonzalez, E.; Baekelant, W.; Martinez, G.T.; Abakumov, A.M.; Van Tendeloo, G.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.
Title Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites Type A1 Journal article
Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
Volume (down) 10 Issue 10 Pages 7604-7611
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.
Address RIES, Hokkaido University , N20W10, Kita-Ward Sapporo 001-0020, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381959100043 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 57 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from the Belgian Federal government (Belspo through the IAP-VI/27 and IAP-VII/05 programs), the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 310651 SACS and no. 312483-ESTEEM2), the Flemish government in the form of long-term structural funding “Methusalem” grant METH/15/04 CASAS2, the Hercules foundation (HER/11/14), the “Strategisch Initiatief Materialen” SoPPoM program, and the Fund for Scientific Research Flanders (FWO) grants G.0349.12 and G.0B39.15. S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The authors thank Prof. S. Van Aert for helpful discussions, Dr. T. De Baerdemaeker for XRD measurements, Mr. B. Dieu for the preparation of graphical material, and UOP Antwerp for the kind donation of zeolite samples.; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
Call Number c:irua:134576 c:irua:134576 Serial 4102
Permanent link to this record
 

 
Author Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R.
Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
Year 2017 Publication NPG Asia materials Abbreviated Journal Npg Asia Mater
Volume (down) 9 Issue Pages e385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402065300005 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1884-4049; 1884-4057 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.157 Times cited 8 Open Access OpenAccess
Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157
Call Number UA @ lucian @ c:irua:144263 Serial 4691
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S.
Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume (down) 8 Issue 8 Pages 501-508
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.
Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000374534100019 Publication Date 2016-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 51 Open Access
Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87
Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J.
Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume (down) 8 Issue 8 Pages 347-353
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372505500013 Publication Date 2016-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 28 Open Access
Notes Approved Most recent IF: 25.87
Call Number UA @ lucian @ c:irua:133189 Serial 4199
Permanent link to this record