|   | 
Details
   web
Records
Author Milovanović, S.P.; Peeters, F.M.
Title Strained graphene structures : from valleytronics to pressure sensing Type P1 Proceeding
Year 2018 Publication Nanostructured Materials For The Detection Of Cbrn Abbreviated Journal
Volume (down) Issue Pages 3-17 T2 - NATO Advanced Research Workshop on Nanos
Keywords P1 Proceeding; Pharmacology. Therapy; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477758900001 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-024-1306-9; 978-94-024-1304-5; 978-94-024-1303-8; 978-94-024-1303-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161972 Serial 8583
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V.
Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (down) Issue Pages 1-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001047512300001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 1 Open Access Not_Open_Access: Available from 25.01.2024
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:198290 Serial 8819
Permanent link to this record