toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L.
  Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume (down) 52 Issue 52 Pages 8219-8222
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.
  Address State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000378715400006 Publication Date 2016-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 19 Open Access
  Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved Most recent IF: 6.319
  Call Number c:irua:134660 c:irua:134660 Serial 4110
Permanent link to this record
 

 
Author Ying, J.; Yang, X.-Y.; Hu, Z.-Y.; Mu, S.-C.; Janiak, C.; Geng, W.; Pan, M.; Ke, X.; Van Tendeloo, G.; Su, B.-L.
  Title One particle@one cell : highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction Type A1 Journal article
  Year 2014 Publication Nano energy Abbreviated Journal Nano Energy
  Volume (down) 8 Issue Pages 214-222
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Highly monodispersed platinum-based nanoalloys are the best-known catalysts for the oxygen reduction reaction. Although certainly promising, the durability and stability are among the main requirements for commercializing fuel cell electrocatalysts in practical applications. Herein, we synthesize highly stable, durable and catalytic active monodispersed PtPd nano-particles encapsulated in a unique one particle@one cell structure by adjusting the viscosity of solvents using mesocellular foam. PtPd nanoparticles in mesocellular carbon foam exhibit an excellent electrocatalytic activity (over 4 times mass and specific activities than the commercial Pt/C catalyst). Most importantly, this nanocatalyst shows no obvious change of structure and only a 29.5% loss in electrochemically active surface area after 5000 potential sweeps between 0.6 and 1.1 V versus reversible hydrogen electrode cycles. (C) 2014 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000340981700026 Publication Date 2014-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.343 Times cited 40 Open Access
  Notes Approved Most recent IF: 12.343; 2014 IF: 10.325
  Call Number UA @ lucian @ c:irua:119255 Serial 2465
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: