toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  doi
openurl 
  Title Cobalt location in p-CoOxIn-SnO2 nanocomposites : correlation with gas sensor performances Type A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume (up) 721 Issue Pages 249-260  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ; This work was supported by ERA-Net.Plus grant N 096 FON-SENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:145142 Serial 4714  
Permanent link to this record
 

 
Author Stefaniak, E.A.; Darchuk, L.; Sapundjiev, D.; Kips, R.; Aregbe, Y.; Van Grieken, R. pdf  doi
openurl 
  Title New insight into UO2F2 particulate structure by micro-Raman spectroscopy Type A1 Journal article
  Year 2013 Publication Journal of molecular structure Abbreviated Journal  
  Volume (up) 1040 Issue Pages 206-212  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the UO band appeared at 867 cm−1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm−1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be most effective. Application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318961000027 Publication Date 2013-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107123 Serial 8299  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: