toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Laffez, P.; Van Tendeloo, G.; Seshadri, R.; Hervieu, M.; Martin, C.; Maignan, A.; Raveau, B. doi  openurl
  Title Microstructural and physical properties of layered manganite oxides related to the magnetoresistive perovskites Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 80 Issue Pages 5850-5856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996VU98700045 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 36 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:17848 Serial 2039  
Permanent link to this record
 

 
Author Hai, G.-Q.; Studart, N.; Peeters, F.M.; Koenraad, P.M.; Wolter, J.H. doi  openurl
  Title Intersubband-coupling and screening effects on the electron transport in a quasi-two-dimensional δ-doped semiconductor system Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 80 Issue Pages 5809-5814  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effects due to intersubband coupling and screening on the ionized impurity scattering are studied for a quasi-two-dimensional electron system in delta-doped semiconductors. We found that intersubband coupling plays an essential role in describing the screening properties and the effect of ionized impurity scattering on the mobility in a multisubband system. At the onset of the occupation of a higher subband, the screening due to the intersubband coupling leads to a reduction of the small angle scattering rate in the lower subband. We showed that such an effect is significant in a delta-doped quantum well and results in a pronounced increase of the quantum mobility at the onset of the occupation of a higher subband. (C) 1996 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996VU98700039 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 40 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15789 Serial 1712  
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Peeters, F.M. doi  openurl
  Title High-field transport properties of graphene Type A1 Journal article
  Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 110 Issue 6 Pages 063704,1-063704,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical investigation on the transport properties of graphene in the presence of high dc driving fields. Considering electron interactions with impurities and acoustic and optical phonons in graphene, we employ the momentum- and energy-balance equations derived from the Boltzmann equation to self-consistently evaluate the drift velocity and temperature of electrons in graphene in the linear and nonlinear response regimes. We find that the current-voltage relation exhibits distinctly nonlinear behavior, especially in the high electric field regime. Under the action of high-fields the large source-drain (sd) current density can be achieved and the current saturation in graphene is incomplete with increasing the sd voltage Vsd up to 3 V. Moreover, for high fields, Vsd>0.1 V, the heating of electrons in graphene occurs. It is shown that the sd current and electron temperature are sensitive to electron density and lattice temperature in the graphene device. This study is relevant to the application of graphene as high-field nano-electronic devices such as graphene field-effect transistors.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295619300059 Publication Date 2011-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 17 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206) and the Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:93614 Serial 1433  
Permanent link to this record
 

 
Author Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Hevesi, K.; Gensterblum, G.; Yu, L.M.; Pireaux, J.J.; Grey, F.; Bohr, J. pdf  doi
openurl 
  Title Structural defects and epitaxial rotation of C60 and C70 (111) films on GeS(001) Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 80 Issue 6 Pages 3310-3318  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A transmission electron microscopy study of epitaxial C-60 and C-70 films grown on a GeS (001) surface is presented. The relationship between the orientation of the substrate and the films and structural defects in the films, such as grain boundaries, unknown in bulk C-60 and C-70 crystals, are studied. Small misalignments of the overlayers with respect to the orientation of the substrate, so-called epitaxial rotations, exist mainly in C-70 films, but also sporadically in the C-60 overlayers. A simple symmetry model, previously used to predict the rotation of hexagonal overlayers on hexagonal substrates, is numerically tested and applied to the present situation. Some qualitative conclusions concerning the substrate-film interaction are deduced. (C) 1996 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996VG68100027 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 6 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:95233 Serial 3229  
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K. doi  openurl
  Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 3 Pages 032102,1-032102,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000293679000026 Publication Date 2011-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:92473 Serial 3749  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Role of sputtered Cu atoms and ions in a direct current glow discharge: combined fluid and Monte Carlo model Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 79 Issue 3 Pages 1279-1286  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996TT92200011 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 81 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:16239 Serial 2920  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title The role of fast argon ions and atoms in the ionization of argon in a direct current glow discharge: a mathematical simulation Type A1 Journal article
  Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 78 Issue Pages 6427-6431  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1995TH85100012 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 60 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:12264 Serial 2913  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W. doi  openurl
  Title Hybrid Monte Carlo-fluid model of a direct current glow discharge Type A1 Journal article
  Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 78 Issue Pages 2233-2241  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1995RP71800009 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 117 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12262 Serial 1526  
Permanent link to this record
 

 
Author Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of hydrogenated silicene and germanene Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 22 Pages 223107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of hydrogenated silicene and germanene, so called silicane and germanane, respectively, are investigated using first-principles calculations based on density functional theory. Two different atomic configurations are found to be stable and energetically degenerate. Upon the adsorption of hydrogen, an energy gap opens in silicene and germanene. Their energy gaps are next computed using the HSE hybrid functional as well as the G(0)W(0) many-body perturbation method. These materials are found to be wide band-gap semiconductors, the type of gap in silicane (direct or indirect) depending on its atomic configuration. Germanane is predicted to be a direct-gap material, independent of its atomic configuration, with an average energy gap of about 3.2 eV, this material thus being potentially interesting for optoelectronic applications in the blue/violet spectral range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595682]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700057 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 63 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105586 Serial 1003  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Fischetti, M.V. doi  openurl
  Title Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach Type A1 Journal article
  Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 109 Issue 12 Pages 124503-124503,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electron-phonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the evaluation of the Zener tunneling current under any three-dimensional potential profile. For a one-dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field, and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p-n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model, but a direct numerical treatment is required for low bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000292331200134 Publication Date 2011-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 41 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:90808 Serial 1325  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Structural and vibrational properties of amorphous GeO2 from first-principles Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 20 Pages 202110,1-202110,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The structural and vibrational properties of amorphous germanium oxide (a-GeO<sub>2</sub>) are investigated using first-principles calculations based on density functional theory. We first generate an a-GeO<sub>2</sub> structure by first-principles molecular dynamics and analyze its structural properties. The vibrational spectra is then calculated within a density-functional approach. Both static and dynamic properties are in good agreement with experimental data. We next generate defects in our structure (oxygen vacancies with several density and charge states) and consider the most stable atomic configurations, focusing on the vibrational features of threefold coordinated O and divalent Ge centers.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000290812100038 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 226 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90222 Serial 3202  
Permanent link to this record
 

 
Author Hezareh, T.; Razavi, F.S.; Kremer, R.K.; Habermeier, H.-U.; Lebedev, O.I.; Kirilenko, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Effect of PbZr0.52Ti0.48O3 thin layer on structure, electronic and magnetic properties of La0.65Sr0.35MnO3 and La0.65Ca0.30MnO3 thin-films Type A1 Journal article
  Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 109 Issue 11 Pages 113707,1-113707,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial thin film heterostructures of high dielectric PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub> (PZT) and La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A-divalent alkaline earth metals such as Sr (LSMO) and Ca (LCMO)) were grown on SrTiO<sub>3</sub> substrates and their structure, temperature dependence of electrical resistivity, and magnetization were investigated as a function of the thickness of the LSMO(LCMO) layer. The microstructures of the samples were analyzed by TEM. By applying an electric field across the PZT layer, we applied a ferrodistortive pressure on the manganite layer and studied the correlations between lattice distortion and electric transport and magnetic properties of the CMR materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000292214700069 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:90964 Serial 843  
Permanent link to this record
 

 
Author Bogaerts, A.; van Straaten, M.; Gijbels, R. doi  openurl
  Title Description of the thermalization process of the sputtered atoms in a glow discharge using a 3-dimensional Monte Carlo method Type A1 Journal article
  Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 77 Issue Pages 1868-1874  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1995RC30300006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 87 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12270 Serial 655  
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K. doi  openurl
  Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 16 Pages 162101,1-162101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289842700032 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 33 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:89971 Serial 3076  
Permanent link to this record
 

 
Author Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. doi  openurl
  Title Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 13 Pages 131502-131502,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A magnetron discharge is characterized by drifts of the charged particles guiding center, caused by the magnetic field, in contrast to unmagnetized discharges. Because of these drifts, a pronounced asymmetry of the discharge can be observed in a dual magnetron setup. In this work, it is found that the shape of the discharge in a dual magnetron configuration depends on the magnetic field configuration. In a closed configuration, strong drifts were observed in one preferential direction, whereas in a mirror configuration the deflection of the discharge was not so pronounced. Our calculations confirm experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289153600017 Publication Date 2011-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:87867 Serial 1026  
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Groeseneken, G.; Fischetti, M.V. doi  openurl
  Title Impact of field-induced quantum confinement in tunneling field-effect devices Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 14 Pages 143503,1-143503,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Being the working principle of a tunnel field-effect transistor, band-to-band tunneling is given a rigorous quantum mechanical treatment to incorporate confinement effects, multiple electron and hole valleys, and interactions with phonons. The model reveals that the strong band bending near the gate dielectric, required to create short tunnel paths, results in quantization of the energy bands. Comparison with semiclassical models reveals a big shift in the onset of tunneling. The effective mass difference of the distinct valleys is found to reduce the subthreshold swing steepness.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289297800074 Publication Date 2011-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 76 Open Access  
  Notes ; The authors acknowledge Anne Verhulst for useful discussions. William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:89297 Serial 1559  
Permanent link to this record
 

 
Author Wouters, J.; Lebedev, O.I.; Van Tendeloo, G.; Yamada, H.; Sato, N.; Vanacken, J.; Moshchalkov, V.V.; Verbiest, T.; Valev, V.K. pdf  doi
openurl 
  Title Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy Type A1 Journal article
  Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 109 Issue 7 Pages 076105-076105,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Faraday rotation has been used to investigate a series of polymer films doped with magnetic iron oxide nanoparticles. The films have been prepared by spin-coating and melt-processing. In each case, upon varying the angle of optical incidence on the films, an in-plane magnetic anisotropy is observed. The effect of such an anisotropy on the Faraday rotation as a function of the angle of optical incidence is verified by comparison with magnetically poled films. These results demonstrate that care should be taken upon analyzing the magnetic behavior of such films on account of the sample preparation techniques themselves being able to affect the magnetization.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289949000166 Publication Date 2011-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:89917 Serial 2709  
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
  Year 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 18 Issue 3 Pages 033504-033504,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000289151900073 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.115; 2011 IF: 2.147  
  Call Number UA @ lucian @ c:irua:87876 Serial 1233  
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 5 Pages 051914  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000286988400027 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 66 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105604 Serial 3844  
Permanent link to this record
 

 
Author Paul, M.; Kufer, D.; Müller, A.; Brück, S.; Goering, E.; Kamp, M.; Verbeeck, J.; Tian, H.; Van Tendeloo, G.; Ingle, N.J.C.; Sing, M.; Claessen, R. pdf  doi
openurl 
  Title Fe3O4/ZnO : a high-quality magnetic oxide-semiconductor heterostructure by reactive deposition Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 1 Pages 012512,1-012512,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the epitaxial growth of Fe<sub>3</sub>O<sub>4</sub> films on ZnO by a simple reactive deposition procedure using molecular oxygen as an oxidizing agent. X-ray photoelectron spectroscopy results evidence that the iron-oxide surface is nearly stoichiometric magnetite. X-ray diffraction results indicate monocrystalline epitaxy and almost complete structural relaxation. Scanning transmission electron micrographs reveal that the microstructure consists of domains which are separated by antiphase boundaries or twin boundaries. The magnetite films show rather slow magnetization behavior in comparison with bulk crystals probably due to reduced magnetization at antiphase boundaries in small applied fields.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000286009800055 Publication Date 2011-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes The authors acknowledge financial support by DFG through Forschergruppe FOR 1162. Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:88653 Serial 3532  
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue Pages 261901-261901,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285768100015 Publication Date 2010-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 23 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85759 Serial 2803  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. doi  openurl
  Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 23 Pages 233109,1-233109,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285364000067 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:86972 Serial 1056  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J. doi  openurl
  Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 21 Pages 212906  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000284618300039 Publication Date 2010-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:105617 Serial 1213  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Defected graphene nanoribbons under axial compression Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 15 Pages 153118,1-153118,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000283216900069 Publication Date 2010-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85789 Serial 624  
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M. doi  openurl
  Title A simplified quantum mechanical model for nanowire transistors based on non-linear variational calculus Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 108 Issue 6 Pages 063708,1-063708,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A simplified quantum mechanical model is developed to investigate quantum transport features such as the electron concentration and the current flowing through a silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET). In particular, the electron concentration is extracted from a self-consistent solution of the Schrödinger and Poisson equations as well as the ballistic Boltzmann equation which have been solved by exploiting a nonlinear variational principle within the framework of the generalized local density approximation. A suitable action functional has been minimized and details of the implementation and its numerical minimization are given. The current density and its related current-voltage characteristics are calculated from the one-dimensional ballistic steady-state Boltzmann transport equation which is solved analytically by using the method of characteristic curves. The straightforward implementation, the computational speed and the good qualitative behavior of the transport characteristics observed in our approach make it a promising simulation method for modeling quantum transport in nanowire MOSFETs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000282646400067 Publication Date 2010-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes ; This work was supported by Flemish Science Foundation (FWO-VI) and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:84943 Serial 3006  
Permanent link to this record
 

 
Author Chen, L.; Kirilenko, D.; Stesmans, A.; Nguyen, X.S.; Binnemans, K.; Goderis, B.; Vanacken, J.; Lebedev, O.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Symmetry and electronic states of Mn2+ in ZnS nanowires with mixed hexagonal and cubic stacking Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 4 Pages 041918,1-041918,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron spin resonance and electronic spectroscopy techniques were used to study the symmetry and electronic structure of Mn2+ dopants in solvothermally synthesized ZnS nanowires. The average diameter of ∼ 5 nm leads to the observable quantum confinement effects in the photoluminescence excitation spectra. The results clearly demonstrate the three symmetry locations of Mn2+ incorporation. Together with the inferred Mn2+ center densities, these data indicate a much higher efficiency of Mn2+ substitution in the nanowire sample with about two times larger diameter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000281059200038 Publication Date 2010-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Methusalem Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:84869 Serial 3403  
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M. doi  openurl
  Title Electric field: A catalyst for hydrogenation of graphene Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 25 Pages 3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to the importance of hydrogenation of graphene for several applications, we present an alternative approach to hydrogenate graphene based on density functional theory calculations. We find that a negative perpendicular electric field F can act as a catalyst to reduce the energy barrier for molecular H<sub>2</sub> dissociative adsorption on graphene. Increasing -F above 0.02 a.u. (1 a.u.=5.14×10<sup>11</sup> V/m), this hydrogenation process occurs smoothly without any potential barrier.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000279168100052 Publication Date 2010-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 88 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83924 Serial 881  
Permanent link to this record
 

 
Author Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hébert, S. doi  openurl
  Title Negative magnetoresistance in a V3+/V4+ mixed valent vanadate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 23 Pages 232502,1-232502,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetotransport and magnetic properties of the PbV6O11 vanadate, crystallizing in the P63mc space group, reveal the existence of a negative magnetoresistance related to its ferromagnetic state (TC ∼ 90 K). The maximum effect is observed at 20 K reaching −30% in 9 T. The structural study of this ceramic reveals a V/Pb ratio smaller than expected from the formula. This is explained by the presence of numerous stacking faults observed by high resolution transmission electron microscopy. The existence of these planar defects acting as resistive barriers along the c axis could be responsible for tunneling magnetoresistance.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278695900045 Publication Date 2010-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83293 Serial 2291  
Permanent link to this record
 

 
Author O'Regan, T.P.; Hurley, P.K.; Sorée, B.; Fischetti, M.V. doi  openurl
  Title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures : charge quantization and nonparabolic corrections Type A1 Journal article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 21 Pages 213514,1-213514,3  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As metal-oxide-semiconductor (MOS) structures based on a self-consistent PoissonSchrödinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D<sub>it</sub>), is a contributing factor to the experimental observation of an almost symmetric C-V response for In<sub>0.53</sub>Ga<sub>0.47</sub>As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Γ valley, shifting the capacitance increase to lower inversion charge densities.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278183200090 Publication Date 2010-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:89509 Serial 2143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: