toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Monico, L.; Janssens, K.; Cotte, M.; Romani, A.; Sorace, L.; Grazia, C.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 30 Issue 7 Pages 1500-1510  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Light-induced redox processes have been established as the cause of the chromatic alterations of a number of artists' pigments used from the 15th to the 20th century. Despite the fact that a general comprehension of the mechanisms has been provided through the characterization of photo-degraded compounds, both exhaustive information on the wavelength-dependence of the alteration process of the pigments and experimental evidence in how visible light may influence the formation pathways of specific secondary compounds are still lacking. Establishing an analytical protocol for the study of wavelength-dependence of pigments on photo-redox pathways is relevant for the safe illumination of paintings, especially in view of the possible use of spectrally tunable light sources such as white light emitting diodes (WLEDs). In this work, we propose an integrated approach based on a combination of diffuse reflectance UV-visible, synchrotron radiation (SR)-based micro X-ray fluorescence (m-XRF)/X-ray absorption near edge structure (m-XANES) and electron paramagnetic resonance (EPR) spectroscopies to study the photo-redox process of Cr(VI) -> Cr(III) for lead chromate yellows (PbCr1-xSxO4, 0 <= x <= 0.8) under exposure to different monochromatic light. In view of the thin (3-5 mm) alteration layer that is formed at the paint surface after light exposure, SR-based Cr K-edge mu-XANES/mu-XRF analysis was employed to obtain information on the abundance, nature and distribution of the alteration of Cr(III)-compounds at the micrometricscale level. On the other hand, EPR spectroscopy was used as a complementary tool to the SR-based X-ray methods due to its sensitivity for revealing species containing one or more unpaired electrons and for distinguishing different coordination geometries of paramagnetic centers, such as Cr(V)-species. Semi-quantitative indications about the darkening of the paint surface were obtained by UV-Vis spectroscopy. An abundance of reduced Cr down to around 50% was detected at the aged surface of chrome yellow paints. The reduction process was favored not only by wavelengths shorter than 460 nm (i.e., where the pigment shows its maximum absorption) but also by light in the 490-530 nm range. The first evidence of the presence of Cr(V)-intermediates in the Cr(VI) -> Cr(III) reduction reaction allowed the risks of inducing photo-degradation of the 490-530 nm wavelength range to be explained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356971900004 Publication Date 2015-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 17 Open Access  
  Notes ; This research was supported by the Italian projects PRIN-(SICH) and PON- (ITACHA) and by Belgian Science Policy project S2-ART (BELSPO S4DA), the GOA “SOLARPAINT” (Research Fund Antwerp University, Belgium) and FWO (Brussels, Belgium) projects no. G.0C12.13, G.0704.08 and G.01769.09. ESRF is acknowledged for the grants received (experiments HG18 and HG26). L.S. and L.M. acknowledge the financial support of Ente-CRF and CNR-Short Term Mobility Programme 2013, respectively. ; Approved Most recent IF: 3.379; 2015 IF: 3.466  
  Call Number UA @ admin @ c:irua:127059 Serial 5862  
Permanent link to this record
 

 
Author Van de Vijver, E.; Van Meirvenne, M.; Vandenhaute, L.; Delefortrie, S.; De Smedt, P.; Saey, T.; Seuntjens, P. doi  openurl
  Title Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar Type A1 Journal article
  Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal  
  Volume 17 Issue 7 Pages 1271-1281  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357793300008 Publication Date 2015-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127130 Serial 8715  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M. pdf  doi
openurl 
  Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
  Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 45 Issue 45 Pages 1192-1200  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367614700041 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:131095 Serial 4257  
Permanent link to this record
 

 
Author Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M. doi  openurl
  Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 44 Issue 44 Pages 20568-20576  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000365411500036 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 5 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:130330 Serial 4256  
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. pdf  doi
openurl 
  Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 141-148  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000368755500014 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access  
  Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131589 Serial 4184  
Permanent link to this record
 

 
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M. pdf  doi
openurl 
  Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 13013-13020  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354195300065 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 104 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number c:irua:126394 Serial 2835  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Warwick, M.E.A.; Kaunisto, K.; Gasparotto, A.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Maccato, C.; Fornasiero, P.; doi  openurl
  Title Fe2O3-TiO2 nanosystems by a hybrid PE-CVD/ALD approach : controllable synthesis, growth mechanism, and photocatalytic properties Type A1 Journal article
  Year 2015 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 17 Issue 17 Pages 6219-6226  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supported Fe2O3–TiO2 nanocomposites are fabricated by an original vapor phase synthetic strategy, consisting of the initial growth of Fe2O3 nanosystems on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition, followed by atomic layer deposition of TiO2 overlayers with variable thickness, and final thermal treatment in air. A thorough characterization of the target systems is carried out by X-ray diffraction, atomic force microscopy, field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. High purity nanomaterials characterized by the co-presence of Fe2O3 (hematite) and TiO2 (anatase), with an intimate Fe2O3–TiO2 contact, are successfully obtained. In addition, photocatalytic tests demonstrate that, whereas both single-phase oxides do not show appreciable activity, the composite systems are able to degrade methyl orange aqueous solutions under simulated solar light, and even visible light, with an efficiency directly dependent on TiO2 overlayer thickness. This finding opens attractive perspectives for eventual applications in wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358915300018 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” IJNMP4-SL-2012- 310333), as well as from Padova University ex-60% 2012–2015 projects, grant no. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S. T. acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Prof. S. Mathur and Dr. Y. Gönüllü (Department of Chemistry, Cologne University, Germany) for their precious help and assistance in ALD depositions, and to Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 3.474; 2015 IF: 4.034  
  Call Number c:irua:127237 Serial 3531  
Permanent link to this record
 

 
Author Struzzi, C.; Erbahar, D.; Scardamaglia, M.; Amati, M.; Gregoratti, L.; Lagos; Van Tendeloo, G.; Snyders, R.; Ewels, C.; Bittencourt, C. doi  openurl
  Title Selective decoration of isolated carbon nanotubes by potassium evaporation : scanning photoemission microscopy and density functional theory Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 3 Issue 3 Pages 2518-2527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Site selective doping of aligned carbon nanostructures represents a promising approach for their implementation in actual devices. In the present work we report on alkali metals decoration on low density vertically aligned carbon nanotubes, disclosing the possibility of engineering site selective depositions of potassium atoms on the carbon systems. Photoemission measurements were combined with microscopy demonstrating the effective spatial control of alkali deposition. The changes of electronic structures of locally doped carbon regions were studied by exploiting the ability of the scanning photoemission microscopy technique. From the analysis of experimental data supported by theoretical calculations, we show the tuning of the charge transfer from potassium to carbon atoms belonging to neighboring nanotubes or along the same tube structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350984200011 Publication Date 2014-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 6 Open Access  
  Notes Approved Most recent IF: 5.256; 2015 IF: 4.696  
  Call Number c:irua:125496 Serial 2963  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author Leus, K.; Concepcion, P.; Vandichel, M.; Meledina, M.; Grirrane, A.; Esquivel, D.; Turner, S.; Poelman, D.; Waroquier, M.; Van Speybroeck, V.; Van Tendeloo, G.; García, H.; Van Der Voort, P.; pdf  doi
openurl 
  Title Au@UiO-66 : a base free oxidation catalyst Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages 22334-22342  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N-2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H-2 as reducing agents. The Au@UiO-66 materials were evaluated as catalysts in the oxidation of benzyl alcohol and benzyl amine employing O-2 as oxidant. The Au@MOF materials exhibit a very high selectivity towards the ketone (up to 100%). Regenerability and stability tests demonstrate that the Au@UiO-66 catalyst can be recycled with a negligible loss of Au species and no loss of crystallinity. In situ IR measurements of UiO-66 and Au@UiO-66-NaBH4, before and after treatment with alcohol, showed an increase in IR bands that can be assigned to a combination of physisorbed and chemisorbed alcohol species. This was confirmed by velocity power spectra obtained from the molecular dynamics simulations. Active peroxo and oxo species on Au could be visualized with Raman analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350643700005 Publication Date 2015-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 38 Open Access  
  Notes FWO; Hercules; 246791 COUNTATOMS; IAP-PAI Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:125431 Serial 207  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G. doi  openurl
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 3196-3204  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000349473200046 Publication Date 2015-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 17 Open Access  
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125299 Serial 1828  
Permanent link to this record
 

 
Author Silva, A.L.M.; Carvalho, M.L.; Janssens, K.; Veloso, J.F.C.A. pdf  doi
openurl 
  Title A large area full-field EDXRF imaging system based on a THCOBRA gaseous detector Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 30 Issue 2 Pages 343-352  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract By taking advantage of the attractive features in terms of gain, position and energy resolution of the 2D-THCOBRA detector, a new large area Full-Field X-ray Fluorescence Imaging (FF-XRFI) system for EDXRF imaging applications was developed. The proposed FF-XRFI system has an active area of 10 x 10 cm(2) and can be used to examine macroscopic samples with a moderately good energy resolution (< 1.6 keV FWHM at 8 keV) and a suitable spatial resolution (similar to 500 mu m FWHM). This combination of characteristics allows us to record elemental distribution maps from the surface of different sample types by combining image and energy information. Two different approaches were used for X-ray optics, one based on a single pinhole and another based on a parallel multiple-hole collimator. To illustrate the system capabilities, some sample examples were imaged and studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349145700003 Publication Date 2014-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 11 Open Access  
  Notes ; The authors thank Stijn Legrand for acquisition of the MAXRF maps shown in Fig. 15. This work was partially supported by projects CERN/FP/123604/2011 FEDER, COMPETE and FCT (Lisbon) programs. A. L. M. Silva is supported by the QREN programme Mais Centro – Programa Operacional Regional do Centro, FEDER and COMPETE, through the project Biomaterials for Regenerative Medicine (CENTRO-07-ST24-FEDER-002030). ; Approved Most recent IF: 3.379; 2015 IF: 3.466  
  Call Number UA @ admin @ c:irua:125297 Serial 5452  
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.; doi  openurl
  Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
  Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 43 Issue 37 Pages 13883-13891  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000342074100009 Publication Date 2014-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.029; 2014 IF: 4.197  
  Call Number UA @ lucian @ c:irua:119960 Serial 2545  
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 31 Pages 16771-16779  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000340075700048 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 58 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118742 Serial 752  
Permanent link to this record
 

 
Author Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.; pdf  doi
openurl 
  Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 4 Pages 701-707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329069900015 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access  
  Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:113734 Serial 1489  
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M. doi  openurl
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 2 Issue 8 Pages 2671-2680  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000331247500031 Publication Date 2013-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 56 Open Access  
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443  
  Call Number UA @ lucian @ c:irua:115807 Serial 659  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Polyhedral iron oxide coreshell nanoparticles in a biodegradable polymeric matrix : preparation, characterization and application in magnetic particle hyperthermia and drug delivery Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 46 Pages 24367-24377  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polyhedral magnetic iron oxide nanocrystals with multiple facets have been embedded in biocompatible and biodegradable polymeric matrices in order to study their structural, magnetic features and alternating-current (AC) magnetic heating efficiency. The encapsulation of iron oxide nanoparticles into a polymer matrix was confirmed by transmission electron microscopy and further corroborated by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM tomography proved that the iron oxide nanocrystals consist of well-defined polyhedral structures with multiple facets. The magnetic features were found to be in good agreement with the structural and morphological features and are maintained even after encapsulation. Furthermore, the magnetic nanoparticles inside these matrices may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field. The anticancer Taxol drug was encapsulated in these nanoparticles and its physical state and release rate at 37 and 42 °C was studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326745100068 Publication Date 2013-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 19 Open Access  
  Notes Countatoms; IAP Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:111395 Serial 2671  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M. doi  openurl
  Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 3 Pages 1133-1137  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327868400015 Publication Date 2013-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 62 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:112829 Serial 1658  
Permanent link to this record
 

 
Author Damm, H.; Kelchtermans, A.; Bertha, A.; Van den Broeck, F.; Elen, K.; Martins, J.C.; Carleer, R.; D'Haen, J.; De Dobbelaere, C.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Thermal decomposition synthesis of Al-doped ZnO nanoparticles : an in-depth study Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23745-23754  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Al-doped ZnO nanoparticles are synthesized by means of a heating up solution based thermal decomposition method. The synthesis involves a reaction of zinc acetylacetonate hydrate, aluminium acetylacetonate and 1,2-hexadecanediol in the presence of oleic acid and oleyl amine. A proposed reaction mechanism from reagents to monomers is corroborated by analysis of the evolving gases using headspace GC-MS analysis. The Al-doped ZnO nanoparticles synthesized are dynamically stabilized by adsorbed oleate ions, after deprotonation of oleic acid by oleyl amine, as was found by NOESY proton NMR and complementary FTIR spectroscopy. Precession electron diffraction shows a simultaneous increase in lattice parameters with Al concentration. This, together with HAADF-STEM and EDX maps, indicates the incorporation of Al into the ZnO nanoparticles. By the combination of complementary characterization methods during all stages of the synthesis, it is concluded that Al is incorporated into the ZnO wurtzite lattice as a dopant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326395800139 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:112753 Serial 3627  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A. pdf  doi
openurl 
  Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 5001-5008  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000319008700056 Publication Date 2013-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 22 Open Access  
  Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108774 Serial 3460  
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.; pdf  doi
openurl 
  Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3954-3960  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000317859400051 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348  
Permanent link to this record
 

 
Author Borovinskaya, O.; Aghaei, M.; Flamigni, L.; Hattendorf, B.; Tanner, M.; Bogaerts, A.; Günther, D. pdf  doi
openurl 
  Title Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 29 Issue 2 Pages 262-271  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reproducible temporal separation of ion signals generated from a single multi-element droplet, observed in previous studies, was investigated in detail in this work using an ICPTOFMS with high temporal resolution. It was shown that the signal peak intensities of individual elements temporally shift relative to each other only for droplets moving through the plasma off-axis. The magnitude of these shifts correlated with the vaporization temperatures of the analytes and depended on the radial position of the droplets as well as on the thermal properties and velocity profiles of the carrier gases of the ICP. The occurrence of the signal shifting was explained by a spatial separation of analytes already present in the vapor phase in the ICP from a yet unvaporized residue of the droplet. This separation is most likely driven by anisotropic diffusion of vaporized analytes towards the plasma axis and a radial velocity gradient. The proposed explanation is supported by modeling of the gas velocities inside the ICP and imaging of the atomic and ionic emissions produced from single droplets, whose patterns were sloping towards the center of the torch. The effects observed in these studies are important not only for the fundamental understanding of analyteplasma interactions but have also a direct impact on the signal intensities and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000006 Publication Date 2013-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112897 Serial 697  
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A. pdf  doi
openurl 
  Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 29 Issue 2 Pages 249-261  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000005 Publication Date 2013-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112896 Serial 2427  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  doi
openurl 
  Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 28 Issue 9 Pages 1485-1492  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000322922300016 Publication Date 2013-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ lucian @ c:irua:109204 Serial 848  
Permanent link to this record
 

 
Author Alfeld, M.; Pedroso, J.V.; van Hommes, M.E.; van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. pdf  doi
openurl 
  Title A mobile instrument for in situ scanning macro-XRF investigation of historical paintings Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 28 Issue 5 Pages 760-767  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Scanning macro-X-ray fluorescence analysis (MA-XRF) is rapidly being established as a technique for the investigation of historical paintings. The elemental distribution images acquired by this method allow for the visualization of hidden paint layers and thus provide insight into the artist's creative process and the painting's conservation history. Due to the lack of a dedicated, commercially available instrument the application of the technique was limited to a few groups that constructed their own instruments. We present the first commercially available XRF scanner for paintings, consisting of an X-ray tube mounted with a Silicon-Drift (SD) detector on a motorized stage to be moved in front of a painting. The scanner is capable of imaging the distribution of the main constituents of surface and sub-surface paint layers in an area of 80 by 60 square centimeters with dwell times below 10 ms and a lateral resolution below 100 mu m. The scanner features for a broad range of elements between Ti (Z = 22) and Mo (Z = 42) a count rate of more than 1000 counts per second (cps)?mass percent and detection limits of 100 ppm for measurements of 1 s duration. Next to a presentation of spectrometric figures of merit, the value of the technique is illustrated through a case study of a painting by Rembrandt's student Govert Flinck (1615-1660).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317674200019 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 106 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents the results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. M. Alfeld receives a Ph. D. fellowship of the Research Foundation-Flanders (FWO). We thank J. Langerock for allowing us to examine the portable altar triptych shown in Fig. 5. ; Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ admin @ c:irua:108517 Serial 5453  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A. doi  openurl
  Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000332395700048 Publication Date 2014-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:128893 Serial 4520  
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 6 Pages 2588-2596  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000329926700040 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 47 Open Access  
  Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:114829 Serial 2525  
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. pdf  doi
openurl 
  Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 11 Pages 3702-3705  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000315165100002 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 74 Open Access  
  Notes Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:107702 Serial 94  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: