toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Mortet, V.; Zhang, L.; Echert, M.; Soltani, A.; d' Haen, J.; Douheret, O.; Moreau, M.; Osswald, S.; Neyts, E.; Troadec, D.; Wagner, P.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K. doi  openurl
  Title Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition Type A3 Journal article
  Year 2009 Publication Materials Research Society symposium proceedings Abbreviated Journal  
  Volume Issue 1203 Pages  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wuhan Editor  
  Language Wos Publication Date 2010-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1946-4274; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81646 Serial 327  
Permanent link to this record
 

 
Author Zhang, L.; Erni, R.; Verbeeck, J.; Van Tendeloo, G. doi  openurl
  Title Retrieving the dielectric function of diamond from valence electron energy-loss spectroscopy Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 19 Pages 195119,1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A data-acquisition and data-processing method is proposed that aims at minimizing the effect of retardation on the Kramers-Kronig analysis of valence electron energy-loss spectra. This method is applied to diamond, which, due to its high dielectric constant, is a material that shows strong retardation effects and thus is a challenging material to be studied by valence electron energy-loss spectroscopy. The results obtained show a significant improvement but still show small discrepancies with respect to optical data, which are most likely due to the residual retardation contributions and the fact that nonzero momentum transfers are measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000256971600055 Publication Date 2008-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:70219UA @ admin @ c:irua:70219 Serial 2900  
Permanent link to this record
 

 
Author Han, Z.; Ni, J.; Smits, P.; Underhill, C.; Xie, B.; Chen, Y.; Liu, N.; Tylzanowski, P.; Parmelee, D.; Feng, P.; Ding, I.; Gao, F.; Gentz, R.; Huylebroeck, D.; Merregaert, J.; Zhang, L. doi  openurl
  Title Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells Type A1 Journal article
  Year 2001 Publication The FASEB journal Abbreviated Journal  
  Volume 15 Issue Pages 988-994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bethesda, Md Editor  
  Language Wos 000167959300013 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6860; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 94 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:33805 Serial 1161  
Permanent link to this record
 

 
Author Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. doi  openurl
  Title Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 30 Pages 305604,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000256838400014 Publication Date 2008-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 309 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:70224 Serial 3455  
Permanent link to this record
 

 
Author Sercu, S.; Zhang, L.; Merregaert, J. doi  openurl
  Title The extracellular matrix protein 1: its molecular interaction and implication in tumor progression Type A1 Journal article
  Year 2008 Publication Cancer investigation Abbreviated Journal Cancer Invest  
  Volume 26 Issue 4 Pages 375-384  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000255370000008 Publication Date 2008-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7907;1532-4192; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.007 Times cited 41 Open Access  
  Notes Approved Most recent IF: 2.007; 2008 IF: 1.976  
  Call Number UA @ lucian @ c:irua:68573 Serial 1160  
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.; pdf  doi
openurl 
  Title Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 8 Pages 4389-4394  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000340446200028 Publication Date 2014-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:118128 Serial 3678  
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 6 Pages 1414-1423  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Chen, H.; Xu, J.; Wang, Y.; Wang, D.; Ferrer-Espada, R.; Wang, Y.; Zhou, J.; Pedrazo-Tardajos, A.; Yang, M.; Tan, J.-H.; Yang, X.; Zhang, L.; Sychugov, I.; Chen, S.; Bals, S.; Paulsson, J.; Yang, Z. pdf  doi
openurl 
  Title Color-switchable nanosilicon fluorescent probes Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 9 Pages 15450-15459  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Fluorescent probes are vital to cell imaging by allowing specific parts of cells to be visualized and quantified. Color-switchable probes (CSPs), with tunable emission wavelength upon contact with specific targets, are particularly powerful because they not only eliminate the need to wash away all unbound probe but also allow for internal controls of probe concentrations, thereby facilitating quantification. Several such CSPs exist and have proven very useful, but not for all key cellular targets. Here we report a pioneering CSP for in situ cell imaging using aldehydefunctionalized silicon nanocrystals (SiNCs) that switch their intrinsic photoluminescence from red to blue quickly when interacting with amino acids in live cells. Though conventional probes often work better in cell-free extracts than in live cells, the SiNCs display the opposite behavior and function well and fast in universal cell lines at 37 ? while requiring much higher temperature in extracts. Furthermore, the SiNCs only disperse in cytoplasm not nucleus, and their fluorescence intensity correlated linearly with the concentration of fed amino acids. We believe these nanosilicon probes will be promising tools to visualize distribution of amino acids and potentially quantify amino acid related processes in live cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861080700001 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 1 Open Access Not_Open_Access  
  Notes Z.Y. and H.C. acknowledge the funding support from the National Natural Science Foundation of China (21905316, 22175201) , the Science and Technology Planning Project of Guangdong Province (2019A050510018) , the Pearl River Recruitment Program of Talent (2019QN01C108) , the EU Infrastructure Project EUSMI (Grant No. E190700310) , and Sun Yat-sen University. S.C. acknowledge the funding support from the National Natural Science Foundation of China (32171192) . D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant No. 894254 SuprAtom) . S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO) . J.Z. acknowledged the funding support from the China Scholarship Council (CSC) . L.Z and J.X. thank Huzhou Li-in Biotechnology Co., Ltd. for the instrumentational and financial support. J.X. and R.F.-E. appreciate fruitful discussion with Dr. Emanuele Leoncini and Dr. Noah Olsman. J.X. and R.F.-E. also thank Mr. Daniel Eaton and Mr. Carlos Sanchez for their help with microscope setups. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:191574 Serial 7288  
Permanent link to this record
 

 
Author Sun, C.; Liao, X.; Xia, F.; Zhao, Y.; Zhang, L.; Mu, S.; Shi, S.; Li, Y.; Peng, H.; Van Tendeloo, G.; Zhao, K.; Wu, J. pdf  doi
openurl 
  Title High-voltage cycling induced thermal vulnerability in LiCoO₂ cathode : cation loss and oxygen release driven by oxygen vacancy migration Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 5 Pages 6181-6190  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The release of the lattice oxygen due to the thermal degradation of layered lithium transition metal oxides is one of the major safety concerns in Li-ion batteries. The oxygen release is generally attributed to the phase transitions from the layered structure to spinel and rocksalt structures that contain less lattice oxygen. Here, a different degradation pathway in LiCoO2 is found, through oxygen vacancy facilitated cation migration and reduction. This process leaves undercoordinated oxygen that gives rise to oxygen release while the structure integrity of the defect-free region is mostly preserved. This oxygen release mechanism can be called surface degradation due to the kinetic control of the cation migration but has a slow surface to bulk propagation with continuous loss of the surface cation ions. It is also strongly correlated with the high-voltage cycling defects that end up with a significant local oxygen release at low temperatures. This work unveils the thermal vulnerability of high-voltage Li-ion batteries and the critical role of the surface fraction as a general mitigating approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537682300101 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access  
  Notes ; C.S., X.L., and F.X. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (21905169). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). ; Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:170246 Serial 6537  
Permanent link to this record
 

 
Author Zhang, L.; Vleugels, J.; Darchuk, L.; van der Biest, O. doi  openurl
  Title Magnetic field oriented tetragonal zirconia with anisotropic toughness Type A1 Journal article
  Year 2011 Publication Journal of the European Ceramic Society Abbreviated Journal  
  Volume 31 Issue 8 Pages 1405-1412  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (0 0 1)-oriented 3 mol% yttria stabilized tetragonal zirconia (3Y-TZP) has been developed by reactive synthesis of undoped pure monoclinic zirconia and co-precipitated 8 mol% yttria-stabilized zirconia (8Y-ZrO2). The dispersed pure monoclinic ZrO2 powder, having magnetic anisotropy, was first aligned in a strong magnetic field and co-sintered in a randomly distributed cubic 8Y-ZrO2 fine matrix powder. The reactive sintering resulted in a 3Y-TZP ceramic with a (0 0 1) orientation. The (0 0 1)-oriented 3Y-TZP showed a substantial toughness anisotropy, i.e. the toughness along the [0 0 1] direction is 54% higher than that of its perpendicular direction. Moreover, the toughness along the [0 0 1] direction is 49% higher than that of a non-textured isotropic reactively synthesized 3Y-TZP and 110% higher than that of an isotropic co-precipitated powder based 3Y-TZP. The substantially enhanced toughness was interpreted in terms of the tetragonal to monoclinic martensitic phase transformability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000290189100008 Publication Date 2011-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:89722 Serial 8192  
Permanent link to this record
 

 
Author Tao, X.Y.; Zhang, X.B.; Zhang, L.; Cheng, J.P.; Liu, F.; Luo, J.H.; Luo, Z.Q.; Geise, H.J. doi  openurl
  Title Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors Type A1 Journal article
  Year 2006 Publication Carbon Abbreviated Journal Carbon  
  Volume 44 Issue 8 Pages 1425-1428  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000237765000008 Publication Date 2006-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 77 Open Access  
  Notes Approved Most recent IF: 6.337; 2006 IF: 3.884  
  Call Number UA @ lucian @ c:irua:59477 Serial 3458  
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
  Year 2019 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 12 Issue 1 Pages 33-39  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453629900004 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354  
  Call Number UA @ admin @ c:irua:156210 Serial 5265  
Permanent link to this record
 

 
Author Clima, S.; Sankaran, K.; Chen, Y.Y.; Fantini, A.; Celano, U.; Belmonte, A.; Zhang, L.; Goux, L.; Govoreanu, B.; Degraeve, R.; Wouters, D.J.; Jurczak, M.; Vandervorst, W.; Gendt, S.D.; Pourtois, G.; doi  openurl
  Title RRAMs based on anionic and cationic switching : a short overview Type A1 Journal article
  Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 8 Issue 6 Pages 501-511  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Resistive random access memories are emerging as a new type of memory that has the potential to combine both the speed of volatile and the retention of nonvolatile memories. It operates based on the formation/dissolution of a low-resistivity filament being constituted of either metallic ions or atomic vacancies within an insulating matrix. At present, the mechanisms and the parameters controlling the performances of the device remain unclear. In that respect, first-principles simulations provide useful insights on the atomistic mechanisms, the thermodynamic and kinetics factors that modulate the material conductivity, providing guidance into the engineering of the operation of the device. In this paper, we review the current state-of-the-art knowledge on the atomistic switching mechanisms driving the operation of copper-based conductive bridge RRAM and HfOx valence change RRAM. [GRAPHICS] Conceptual illustration of the RRAM device with the filament formation and disruption during its operation. AE/IM/CE are the active electrode/insulating matrix/counterelectrode. The blue circles represent the conducting defects. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000338021200004 Publication Date 2014-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.032; 2014 IF: 2.142  
  Call Number UA @ lucian @ c:irua:118679 Serial 2933  
Permanent link to this record
 

 
Author Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers Type A1 Journal article
  Year 2010 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 3 Issue 6 Pages 698-701  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000279753300011 Publication Date 2010-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631;1864-564X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 136 Open Access  
  Notes Approved Most recent IF: 7.226; 2010 IF: 6.325  
  Call Number UA @ lucian @ c:irua:95657 Serial 2962  
Permanent link to this record
 

 
Author Doenen, M.; Zhang, L.; Erni, R.; Williams, O.A.; Hardy, A.; van Bael, M.K.; Wagner, P.; Haenen, K.; Nesladek, M.; Van Tendeloo, G. pdf  doi
openurl 
  Title Diamond nucleation by carbon transport from buried nanodiamond TiO2 sol-gel composites Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 6 Pages 670-673  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263492000007 Publication Date 2008-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 20 Open Access  
  Notes Fwo; Iap-P6/42; Esteem 026019 Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:76329 Serial 688  
Permanent link to this record
 

 
Author Zhang, L. openurl 
  Title Effects of quantum confinement in nanoscale superconductors : from electronic density of states to vortex matter Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:126085 Serial 870  
Permanent link to this record
 

 
Author Malesevic, A.; Kemps, R.; Zhang, L.; Erni, R.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. openurl 
  Title A versatile plasma tool for the synthesis of carbon nanotubes and few-layer graphene sheets Type A1 Journal article
  Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M  
  Volume 10 Issue 8 Pages 2052-2055  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bucharest Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1454-4164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.449 Times cited Open Access  
  Notes Approved Most recent IF: 0.449; 2008 IF: 0.577  
  Call Number UA @ lucian @ c:irua:70636 Serial 3839  
Permanent link to this record
 

 
Author Zhang, L. openurl 
  Title Characteristic diagnosis of atmospheric discharge plasma and kinetics study of reactive species Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 148 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma has received extensive attention due to its promising application prospects in the field of air pollutants degradation and energy conversion. To fulfill the need for particular applications, constructing stable plasma sources and investigating the interaction mechanisms between plasma and substances have been hot research topics. This thesis reports the diagnosis and improvement of plasma sources, diagnosis of the active species in plasma and a modeling study of chemical kinetics processes. The main research contents are as follows: In Chapter 3, a diffuse sine AC dielectric barrier discharge (DBD) is successfully obtained by optimizing the electrode structure. It is found that using double-layer dielectric plates can limit the discharge current intensity and significantly improve the discharge uniformity. The electrical characteristics and gas temperature with different operating time show that the discharge stability is also improved by using double-layer dielectric plates. In Chapter 4, nanosecond pulses are employed to generate diffuse DBD plasmas. Three main discharge stages are distinguished by ICCD images, i.e., the streamer breakdown from the needle tip to the plate electrode, the regime transition from streamer to diffuse plasma, and the propagation of surface discharge on the plate electrode surface. The chapter reveales that in nanosecond pulsed discharges the vibrational temperature of N2 increases with the discharge duration, while the rotational temperature mainly stays constant, which means electron energy is transferred into the vibrational levels, but gas heating is not obvious during the discharge pulse. In Chapter 5, both sine AC DBD and nanosecond pulsed DBD, studied in Chapter 2 and 3, are used for formaldehyde degradation. It is found that nanosecond pulsed DBD has more homogenous characteristics, better stability, and lower plasma gas temperature. Moreover, the energy consumption of nanosecond pulsed DBD is much lower than that of AC DBD. In Chapter 6, a 0D chemical kinetics model is developed to investigate the underlying plasma chemistry of methane dry reforming in a nanosecond pulsed discharge. An overview of the dominant reaction pathways of CO2 and CH4 conversion into the major products is given. Furthermore, most of the CO2 molecules are populated into vibrational states during the pulse. Hence, the vibrational states of CO2 play an important role in its dissociation process. In general, this PhD thesis contributes to a better insight in the mechanisms of sinusoidal AC DBD and nanosecond pulsed DBD plasmas and their applications, i.e., decomposition of formaldehyde and dry reforming of methane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183166 Serial 7605  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: