toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Almohammadi, G.; O'Modhrain, C.; Kelly, S.; Sullivan, J.A. url  doi
openurl 
  Title Ti-doped SBA-15 catalysts used in phenol oxidation reactions Type A1 Journal article
  Year 2020 Publication ACS Omega Abbreviated Journal  
  Volume 5 Issue 1 Pages 791-798  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Two Ti-SBA-15 catalysts are synthesized using techniques that should either deposit Ti atoms specifically at the SBA-15 surface or allow Ti-containing species to exist at both the surface and within the bulk of SBA-15. The materials have been characterized by Fourier transform infrared (FTIR), Raman and UV visible spectroscopies, transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometry microscopies, and N-2 physisorption experiments. They have been applied in the total oxidation of phenol under catalytic wet air oxidation (CWAO) conditions and using photo- and plasma promotion. The materials retain the structure of SBA-15 following the doping in both cases and Ti incorporation is confirmed. The nature of the incorporated Ti remains unclear-with evidence for anatase TiO2 (from Raman and UV vis analysis) and evidence for atomically dispersed Ti from FTIR. In terms of reactivity, the presence of Ti in the in situ-prepared catalyst improves reactivity in the photopromoted reaction (increasing conversion from 28 to 60%), while both Ti catalysts improve reactivity in the CWAO reaction (by 7% over the in situ catalyst and by 25% over the grafted material). The presence of Ti has no beneficial effect on conversion in the plasma-promoted reaction. Here, however, Ti does affect the nature of the oxidized intermediates formed during the total phenol oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507578300086 Publication Date 2019-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.1 Times cited Open Access  
  Notes ; The KSA Ministry of Higher Education is acknowledged for providing G.A.'s studentship, and IRC funded the plasma work under grant ref: GOIPD/2017/1000. ; Approved Most recent IF: 4.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:166578 Serial 6629  
Permanent link to this record
 

 
Author O'Modhrain, C.; Trenchev, G.; Gorbanev, Y.; Bogaerts, A. url  doi
openurl 
  Title Upscaling plasma-based CO₂ conversion : case study of a multi-reactor gliding arc plasmatron Type A1 Journal article
  Year 2024 Publication ACS Engineering Au Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atmospheric pressure plasmas have shifted in recent years from being a burgeoning research field in the academic setting to an actively investigated technology in the chemical, oil, and environmental industries. This is largely driven by the climate change mitigation efforts, as well as the evident pathways of value creation by converting greenhouse gases (such as CO2) into useful chemical feedstock. Currently, most high technology readiness level (TRL) plasma-based technologies are based on volumetric and power-based scaling of thermal plasma systems, which results in large capital investment and regular maintenance costs. This work investigates bringing a quasi-thermal (so-called “warm”) plasma setup, namely, a gliding arc plasmatron, from a lab-scale to a pilot-scale capacity with an increase in throughput capacity by a factor of 10. The method of scaling is the parallelization of plasmatron reactors within a single housing, with the aim of maintaining a warm plasma regime while simultaneously improving build cost and efficiency (compared to separate reactors operating in parallel). Special attention is also given to the safety and control features implemented in the setup, a key component required for integration into industrial systems. The performance of the multi-reactor gliding arc plasmatron (MRGAP) reactor is investigated, focusing on the influence of flow rate and the number of active reactors. The location of active reactors was deemed to have a negligible effect on the monitored metrics of conversion, energy efficiency, and energy cost. The optimum operating conditions were found to be with the most active reactors (five) at the highest investigated flow rate (80 L/min). Analysis of results suggests that an optimum conversion (9%) and plug power-based energy efficiency (19%) can be maintained at a specific energy input (SEI) around 5.3 kJ/L (or 1 eV/molecule). The concept of parallelization of plasmatron reactors within a singular housing was demonstrated to be a viable method for scaling up from a lab-scale to a prototype-scale device, with performance analysis suggesting that increasing the power (through adding more reactor channels) and total flow rate, while maintaining an SEI around 5.3 or 4.2 kJ/L, i.e., 1.3 or 1 eV/molecule (based on plug power and plasma-deposited power, respectively), can result in increased conversion rate without sacrificing absolute conversion or energy efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001166625200001 Publication Date 2024-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204749 Serial 9182  
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 443 Issue Pages 136529  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800010600003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: