|   | 
Details
   web
Record
Author Wardenier, N.; Vanraes, P.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.
Title Removal of micropollutants from water in a continuous-flow electrical discharge reactor Type A1 Journal article
Year 2019 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 362 Issue 362 Pages 238-245
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The emergence of micropollutants into our aquatic resources is regarded as an issue of increasing environmental concern. To protect the aquatic environment against further contamination with micropollutants, treatment with advanced oxidation processes (AOPs) is put forward as a promising technique. In this work, an innovative AOP based on electrical discharges in a continuous-flow pulsed dielectric barrier discharge (DBD) reactor with falling water film over activated carbon textile is examined for its potential application in water treatment. The effect of various operational parameters including feed gas type, gas flow rate, water flow rate and power on removal and energy efficiency has been studied. To this end, a synthetic micropollutant mixture containing five pesticides (atrazine, alachlor, diuron, dichlorvos and pentachlorophenol), two pharmaceuticals (carbamazepine and 1,7-alpha-ethinylestradiol), and 1 plasticizer (bisphenol A) is used. While working under optimal conditions, energy consumption was situated in the range 2.42-4.25 kW h/m(3), which is about two times lower than the economically viable energy cost of AOPs (5 kW h/m(3)). Hence, the application of non-thermal plasma could be regarded as a promising alternative AOP for (industrial) wastewater remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449127500027 Publication Date 2018-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 13 Open Access OpenAccess
Notes Approved Most recent IF: 6.065
Call Number UA @ admin @ c:irua:155358 Serial 5279
Permanent link to this record