|   | 
Details
   web
Records
Author de Bock, L.A.; Van Grieken, R.E.; Camuffo, D.; Grime, G.W.
Title Micro-analysis of museum aerosols to elucidate the soiling of paintings: case of the Correr Museum, Venice, Italy Type A1 Journal article
Year 1996 Publication Environmental science and technology Abbreviated Journal
Volume 30 Issue Pages 3341-3350
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1996VR63100052 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14658 Serial 8228
Permanent link to this record
 

 
Author Hoornaert, S.; van Malderen, H.; Van Grieken, R.
Title Gypsum and other calcium-rich particles above the North Sea Type A1 Journal article
Year 1996 Publication Environmental science and technology Abbreviated Journal
Volume 30 Issue Pages 1515-1520
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Ca-containing particles, especially CaSO4 particles, have been encountered in several atmospheric aerosol studies. An overview is given of the different sources of airborne Ca-containing particles, The North Sea atmosphere is studied to identify the different Ca-containing particle types and to find the correlation between their occurrence and the source regions of the corresponding air masses. About 50000 individual aerosol samples were collected above the Southern Eight of the North Sea for several wind directions and analyzed for their composition using electron probe X-ray microanalysis. Nonhierarchical cluster analysis is performed on the data to reveal the different particle types, their relative abundances and their sources. CaSO4 in most cases constitutes the largest fraction of the Ca-containing particles. Extremely high numbers of CaSO4 particles are found for northeastern winds, coming from the central part of Germany, suggesting that a great fraction is derived from anthropogenic sources located in this region. Among the other Ca-containing particle types are the aluminosilicates, CaCO3, Fe-Ca-rich particles, and CaSO4 or CaCO3 in combination with NaCl.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1996UG95400042 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14647 Serial 8015
Permanent link to this record
 

 
Author van Malderen, H.; Van Grieken, R.; Bufetov, N.V.; Koutzenogii, K.P.
Title Chemical characterization of individual aerosol particles in Central Siberia Type A1 Journal article
Year 1996 Publication Environmental science and technology Abbreviated Journal
Volume 30 Issue Pages 312-321
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1996TN49700065 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14636 Serial 7648
Permanent link to this record
 

 
Author van Malderen, H.; Hoornaert, S.; Van Grieken, R.
Title Identification of individual aerosol particles containing Cr, Pb, and Zn above the North Sea Type A1 Journal article
Year 1996 Publication Environmental science and technology Abbreviated Journal
Volume 30 Issue Pages 489-498
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Aerosol samples have been collected over the southern bight of the North Sea from an aircraft. In this way, 96 samples were taken for single-particle analysis during 16 flights. Almost 45 000 individual particles were analyzed with electron probe X-ray microanalysis. More than 5000 of these were found to contain significant concentrations of one or more of the heavy metals Cr, Pb, and Zn. With the help of hierarchical, nonhierarchical, and fuzzy clustering techniques, various heavy metal-containing particle types could be identified. Significant differences in abundances were detected in the North Sea heavy metal aerosol, depending on the origin of the air masses. In samples with continental influence 50 times more Zn- and Pb-containing particles were found than in samples with a marine history. For Cr, on the other hand, we found abundances in the marine sector that were one-third of the values for continental sectors. This might point to a rather undefined marine source, which could be the recycling of previously deposited material by reinjection into the atmosphere by sea spray. The highest values for Cr-, Pb-, and Zn-containing particles were always detected under southeastern wind directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1996TT49600036 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14639 Serial 8053
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Weltens, R.; Vanermen, G.; de Brucker, N.; Diels, L.
Title Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water Type A1 Journal article
Year 2009 Publication Environmental science and technology Abbreviated Journal
Volume 43 Issue 20 Pages 7651-7657
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15000 to 7500 mg/kg d.m. and from 12000 to 4000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment. This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000270594900014 Publication Date 2009-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:79168 Serial 7683
Permanent link to this record
 

 
Author Baken, S.; Salaets, P.; Desmet, N.; Seuntjens, P.; Vanlierde, E.; Smolders, E.
Title Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments Type A1 Journal article
Year 2015 Publication Environmental science and technology Abbreviated Journal
Volume 49 Issue 5 Pages 2886-2894
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The fate of iron (Fe) may affect that of phosphorus (P) and arsenic (As) in natural waters. This study addresses the removal of Fe, P, and As from streams in lowland catchments fed by reduced, Fe-rich groundwater (average: 20 mg Fe L-1). The concentrations of dissolved Fe (<0.45 mu m) in streams gradually decrease with increasing hydraulic residence time (travel time) of the water in the catchment. The removal of Fe from streamwater is governed by chemical reactions and hydrological processes: the oxidation of ferrous iron (Fe(II)) and the subsequent formation of particulate Fe oxyhydroxides proceeds as the water flows through the catchment into increasingly larger streams. The Fe removal exhibits first-order kinetics with a mean half-life of 12 h, a value in line with predictions by a kinetic model for Fe(II) oxidation. The Fe concentrations in streams vary seasonally: they are higher in winter than in summer, due to shorter hydraulic residence time and lower temperature in winter. The removal of P and As is much faster than that of Fe. The average concentrations of P and As in streams (42 mu g P L-1) and 1.4 mu g As L-1) are 1 order of magnitude below those in groundwater (393 mu g P L-1 and 17 mu g As L-1). This removal is attributed to fast sequestration by oxidizing Fe when the water enters oxic environments, possibly by adsorption on Fe oxyhydroxides or by formation of ferric phosphates. The average P and As concentrations in groundwater largely exceed local environmental limits for freshwater (140 mu g P L-1 and 3 mu g As L((-1)), but in streams, they are below these limits. Naturally occurring Fe in groundwater may alleviate the environmental risk associated with P and As in the receiving streams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350611100040 Publication Date 2015-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125409 Serial 8354
Permanent link to this record
 

 
Author Terzano, R.; Spagnuolo, M.; Vekemans, B.; de Nolf, W.; Janssens, K.; Falkenberg, G.; Ruggiero, P.
Title Assessing the origin and fate of CR, Ni, Cu, Zn, Ph, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods Type A1 Journal article
Year 2007 Publication Environmental science & technology Abbreviated Journal
Volume 41 Issue 19 Pages 6762-6769
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000249840600024 Publication Date 2007-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 61 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:66622 Serial 5481
Permanent link to this record
 

 
Author Ro, C.-U.; Hwang, H.; Kim, H.K.; Chun, Y.; Van Grieken, R.
Title Single-particle characterization of four “Asian Dust” samples collected in Korea, using low-Z particle electron probe X-ray microanalysis Type A1 Journal article
Year 2005 Publication Environmental science and technology Abbreviated Journal
Volume 39 Issue 6 Pages 1409-1419
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000227636300012 Publication Date 2005-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:51591 Serial 8540
Permanent link to this record
 

 
Author Ro, C.-U.; Kim, H.; Oh, K.-Y.; Yea, S.K.; Lee, C.B.; Jang, M.; Van Grieken, R.
Title Single-particle characterization of urban aerosol particles collected in three Korean cities using low-Z electron probe x-ray microanalysis Type A1 Journal article
Year 2002 Publication Environmental science and technology Abbreviated Journal
Volume 36 Issue 22 Pages 4770-4776
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000179348500010 Publication Date 2002-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:40617 Serial 8541
Permanent link to this record
 

 
Author Ro, C.-U.; Oh, K.-Y.; Kim, H.; Kim, Y.P.; Lee, C.B.; Kim, K.-H.; Kang, C.H.; Osán, J.; de Hoog, J.; Worobiec, A.; Van Grieken, R.
Title Single-particle analysis of aerosols at Cheju Island, Korea, using low-Z electron probe X-ray microanalysis: a direct proof of nitrate formation from sea salts Type A1 Journal article
Year 2001 Publication Environmental science and technology Abbreviated Journal
Volume 35 Issue 22 Pages 4487-4494
Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000172177700014 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:36092 Serial 8529
Permanent link to this record
 

 
Author Kolaitis, L.N.; Bruynseels, F.J.; Van Grieken, R.E.; Andreae, M.O.
Title Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles Type A1 Journal article
Year 1989 Publication Environmental science and technology Abbreviated Journal
Volume 23 Issue 2 Pages 236-240
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1989T024900023 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116813 Serial 7783
Permanent link to this record
 

 
Author Bernard, P.C.; Van Grieken, R.E.; Eisma, D.
Title Classification of estuarine particles using automated electron-microprobe analysis and multivariate techniques Type A1 Journal article
Year 1986 Publication Environmental science and technology Abbreviated Journal
Volume 20 Issue 5 Pages 467-473
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1986C117800013 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:113614 Serial 7668
Permanent link to this record
 

 
Author Kindratenko, V.V.; van Espen, P.J.M.; Treiger, B.A.; Van Grieken, R.E.
Title Fractal dimensional classification of aerosol particles by computer-controlled scanning electron microscopy Type A1 Journal article
Year 1994 Publication Environmental science and technology Abbreviated Journal
Volume 28 Issue Pages 2197-2202
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1994PP82900033 Publication Date 2007-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:9497 Serial 7983
Permanent link to this record
 

 
Author Xhoffer, C.; Wouters, L.; Van Grieken, R.
Title Characterization of individual particles in the North Sea surface microlayer and underlying seawater: comparison with atmospheric particles Type A1 Journal article
Year 1992 Publication Environmental science and technology Abbreviated Journal
Volume 26 Issue Pages 2151-2162
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JV98900019 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2841 Serial 7627
Permanent link to this record
 

 
Author Dierck, I.; Michaud, D.; Wouters, L.; Van Grieken, R.
Title Laser microprobe mass analysis of individual North Sea aerosol particles Type A1 Journal article
Year 1992 Publication Environmental science and technology Abbreviated Journal
Volume 26 Issue Pages 802-808
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HL93600028 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2828 Serial 8161
Permanent link to this record
 

 
Author van Malderen, H.; Rojas, C.; Van Grieken, R.
Title Characterization of individual giant aerosol particles above the North Sea Type A1 Journal article
Year 1992 Publication Environmental science and technology Abbreviated Journal
Volume 26 Issue Pages 750-756
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HL93600020 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2827 Serial 7625
Permanent link to this record
 

 
Author Fobe, B.O.; Vleugels, G.J.; Roekens, E.J.; Van Grieken, R.E.; Hermosin, B.; Ortega-Calvo, J.J.; Sanchez del Junco, A.; Saiz-Jimenez, C.
Title Organic and inorganic compounds in limestone weathering crusts from cathedrals in Southern and Western Europe Type A1 Journal article
Year 1995 Publication Environmental science and technology Abbreviated Journal
Volume 29 Issue Pages 1691-1701
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1995RB13100055 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:12346 Serial 8345
Permanent link to this record
 

 
Author Daems, D.; Rutten, I.; Bath, J.; Decrop, D.; Van Gorp, H.; Pérez Ruiz, E.; De Feyter, S.; Turberfield, A.J.; Lammertyn, J.
Title Controlling the bioreceptor spatial distribution at the nanoscale for single molecule counting in microwell arrays Type A1 Journal article
Year 2019 Publication ACS sensors Abbreviated Journal
Volume 4 Issue 9 Pages 2327-2335
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The ability to detect low concentrations of protein biomarkers is crucial for the early-stage detection of many diseases and therefore indispensable for improving diagnostic devices for healthcare. Here, we demonstrate that by integrating DNA nanotechnologies like DNA origami and aptamers, we can design innovative biosensing concepts for reproducible and sensitive detection of specific targets. DNA origami structures decorated with aptamers were studied as a novel tool to structure the biosensor surface with nanoscale precision in a digital detection bioassay, enabling control of the density, orientation, and accessibility of the bioreceptor to optimize the interaction between target and aptamer. DNA origami was used to control the spatial distribution of an in-house-generated aptamer on superparamagnetic microparticles, resulting in an origami-linked digital aptamer bioassay to detect the main peanut antigen Ara h1 with 2-fold improved signal-to-noise ratio and 15-fold improved limit of detection compared to a digital bioassay without DNA origami. Moreover, the sensitivity achieved was 4 orders of magnitude higher than commercially available and literature-reported enzyme-linked immunosorbent assay techniques. In conclusion, this novel and innovative approach to engineer biosensing interfaces will be of major interest to scientists and clinicians looking for new molecular insights and ultrasensitive detection of a broad range of targets, and, for the next generation of diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488424100014 Publication Date 2019-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:166106 Serial 7730
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S.
Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal
Volume 6 Issue 1 Pages 165-173
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001141178500001 Publication Date 2023-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202771 Serial 9053
Permanent link to this record
 

 
Author Crippa, F.; Rodriguez-Lorenzo, L.; Hua, X.; Goris, B.; Bals, S.; Garitaonandia, J.S.; Balog, S.; Burnand, D.; Hirt, A.M.; Haeni, L.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A.
Title Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal
Volume 2 Issue 2 Pages 4462-4470
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Magnetic hyperthermia has the potential to play an important role in cancer therapy and its efficacy relies on the nanomaterials selected. Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent candidates due to the ability of producing enough heat to kill tumor cells by thermal ablation. However, their heating properties depend strongly on crystalline structure and size, which may not be controlled and tuned during the synthetic process; therefore, a postprocessing is needed. We show how thermal annealing can be simultaneously coupled with ligand exchange to stabilize the SPIONs in polar solvents and to modify their crystal structure, which improves hyperthermia behavior. Using high-resolution transmission electron microscopy, X-ray diffraction, Mossbauer spectroscopy, vibrating sample magnetometry, and lock-in thermography, we systematically investigate the impact of size and ligand exchange procedure on crystallinity, their magnetism, and heating ability. We describe a valid and simple approach to optimize SPIONs for hyperthermia by carefully controlling the size, colloidal stability, and crystallinity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700048 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 18 Open Access Not_Open_Access
Notes ; This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials, the Adolphe Merkle Foundation, the University of Fribourg, and the European Society for Molecular Imaging (Grant E141200643). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161927 Serial 5393
Permanent link to this record
 

 
Author Peeters, B.; Daems, D.; Van der Donck, T.; Delport, F.; Lammertyn, J.
Title Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing Type A1 Journal article
Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 11 Issue 7 Pages 6759-6768
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10–23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme–inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459642200008 Publication Date 2019-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160132 Serial 8457
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D.
Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
Year 2019 Publication ACS applied energy materials Abbreviated Journal
Volume 2 Issue 2 Pages 1251-1258
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948900037 Publication Date 2019-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193759 Serial 7414
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B.
Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
Year 2023 Publication ACS applied electronic materials Abbreviated Journal
Volume 5 Issue 11 Pages 5852-5863
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001096792500001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201198 Serial 9026
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A.
Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 6 Pages 2718-2728
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000819431200001 Publication Date 2022-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189555 Serial 7081
Permanent link to this record
 

 
Author Osella, S.; Knippenberg, S.
Title Laurdan as a molecular rotor in biological environments Type A1 Journal article
Year 2019 Publication ACS applied bio materials Abbreviated Journal
Volume 2 Issue 12 Pages 5769-5778
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Laurdan is one of the most used fluorescent probes for lipid membrane phase recognition. Despite its wide use for optical techniques and its versatility as a solvatochromic probe, little is known regarding its use as molecular rotor, for which clear evidence is found in the current study. Although recent computational and experimental studies suggest the existence of two stable conformations of laurdan in different membrane phases, it is difficult to experimentally probe their prevalence. By means of multiscale computational approaches, we prove now that this information can be obtained through the optical properties of the two conformers, ranging from one-photon absorption over two-photon absorption to the first hyperpolarizability. Fluorescence decay and anisotropy analyses are performed as well and stress the importance of laurdan's conformational versatility. As a molecular rotor and with reference to the distinct properties of its conformers, laurdan can be used to probe biochemical processes that change the lipid orders in cell membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000616372300047 Publication Date 2019-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2576-6422 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:180356 Serial 8166
Permanent link to this record
 

 
Author Kocabas, T.; Ozden, A.; Demiroglu, I.; Cakir, D.; Sevik, C.
Title Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications Type A1 Journal article
Year 2018 Publication The journal of physical chemistry letters Abbreviated Journal
Volume 9 Issue 15 Pages 4267-4274
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440956500020 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193765 Serial 7779
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B.
Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume 58 Issue 28 Pages 12751-12765
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476686000027 Publication Date 2019-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:162122 Serial 8416
Permanent link to this record
 

 
Author Seuntjens, D.; Van Tendeloo, M.; Chatzigiannidou, I.; Carvajal-Arroyo, J.M.; Vandendriessche, S.; Vlaeminck, S.E.; Boon, N.
Title Synergistic exposure of return-sludge to anaerobic starvation, sulfide and free ammonia to suppress nitrite oxidizing bacteria Type A1 Journal article
Year 2018 Publication Environmental science and technology Abbreviated Journal
Volume 52 Issue 15 Pages 8725-8732
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441477600073 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152909 Serial 8635
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E.
Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
Year 2016 Publication Environmental science and technology Abbreviated Journal
Volume 50 Issue 17 Pages 9781-9790
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382805800097 Publication Date 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138270 Serial 8176
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M.
Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal
Volume 31 Issue 13 Pages 4805-4816
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000475408400021 Publication Date 2019-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161225 Serial 8465
Permanent link to this record