|   | 
Details
   web
Records
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K.
Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type (down) A1 Journal article
Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom
Volume Issue Pages xrs.3185-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561869600001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access
Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298
Call Number UA @ admin @ c:irua:170972 Serial 6473
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K.
Title Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type (down) A1 Journal article
Year 2020 Publication Science Advances Abbreviated Journal
Volume 6 Issue 31 Pages eabb3379
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556543100033 Publication Date 2020-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access
Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA
Call Number UA @ admin @ c:irua:171270 Serial 6494
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G.
Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type (down) A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 177 Issue Pages 107304
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000850000900001 Publication Date 2022-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8
Call Number UA @ admin @ c:irua:187493 Serial 7138
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K.
Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type (down) A1 Journal article
Year 2022 Publication Science Advances Abbreviated Journal
Volume 8 Issue 23 Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000811556500011 Publication Date 2022-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:189657 Serial 7205
Permanent link to this record
 

 
Author Derks, K.; van der Snickt, G.; Legrand, S.; van der Stighelen, K.; Janssens, K.
Title The dark halo technique in the oeuvre of Michael Sweerts and other Flemish and Dutch baroque painters. A 17th c. empirical solution to mitigate the optical 'simultaneous contrast' effect? Type (down) A1 Journal article
Year 2022 Publication Heritage science Abbreviated Journal
Volume 10 Issue 1 Pages 5
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as 'simultaneous contrast' and 'the crispening effect', described in literature only centuries later. As such, the recently termed 'ring condition' can be seen as the present-day equivalent of the 'halo solution' that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000739965700001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.5
Call Number UA @ admin @ c:irua:185458 Serial 7217
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G.
Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type (down) A1 Journal article
Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 13 Issue 7 Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000972133900001 Publication Date 2023-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 1.679
Call Number UA @ admin @ c:irua:194898 Serial 7333
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G.
Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type (down) A1 Journal article
Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel
Volume 10 Issue 12 Pages 4255-13
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549351800001 Publication Date 2020-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access
Notes Approved Most recent IF: 2.7; 2020 IF: 1.679
Call Number UA @ admin @ c:irua:170012 Serial 7674
Permanent link to this record
 

 
Author Lachmann, T.; van der Snickt, G.; Haschke, M.; Mantouvalou, I.
Title Combined 1D, 2D and 3D micro-XRF techniques for the analysis of illuminated manuscripts Type (down) A1 Journal article
Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume 31 Issue 10 Pages 1989-1997
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The combination of several micro-XRF analysis modes is presented for the investigation of an illuminated parchment manuscript. With a commercial instrument, conventional micro-XRF spot analysis (0D) and mapping (2D) are performed, yielding detailed lateral elemental information. Depth resolution becomes accessible by mounting an additional polycapillary lens in front of an SDD detector. Quantitative confocal depth profiles (1D) are presented as well as the full separation of the front and the backside decorations with the help of fast 3D mappings of specific areas. Only through the use of these multidimensional modes can elemental information be assigned both to lateral and depth positions, making the analysis of such heterogeneous samples feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385362200004 Publication Date 2016-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144755 Serial 7679
Permanent link to this record
 

 
Author Martins, A.; Coddington, J.; van der Snickt, G.; van Driel, B.; McGlinchey, C.; Dahlberg, D.; Janssens, K.; Dik, J.
Title Jackson Pollock's Number 1A, 1948 : a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least squares (MCR-ALS) analysis Type (down) A1 Journal article
Year 2016 Publication Heritage science Abbreviated Journal
Volume 4 Issue Pages 33
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Jackson Pollock's Number 1A, 1948 painting was investigated using in situ scanning macro-x-ray fluorescence mapping (MA-XRF) to help characterize the artist's materials and his creative process. A multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to examine the hyperspectral data and obtain distribution maps and signature spectra for the paints he used. The composition of the paints was elucidated based on the chemical elements identified in the signature spectra and a tentative list of pigments, fillers and other additives is proposed for eleven different paints and for the canvas. The paint distribution maps were used to virtually reconstruct the artist process and document the sequence and manner in which Pollock applied the different paints, using deliberate and specific gestures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386395100001 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138172 Serial 8134
Permanent link to this record
 

 
Author Legrand, S.; van der Snickt, G.; Cagno, S.; Caen, J.; Janssens, K.
Title MA-XRF imaging as a tool to characterize the 16th century heraldic stained-glass panels in Ghent Saint Bavo Cathedral Type (down) A1 Journal article
Year 2019 Publication Journal of cultural heritage Abbreviated Journal
Volume 40 Issue Pages 163-168
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract MA-XRF is a novel macroscopic imaging technique originally developed for easel paintings and recently made available to glass conservators. This paper discusses the first real-life contribution of MA-XRF imaging to a conservation intervention of stained-glass panels. The six panels under study belong to the cathedral building since their creation in 1555-1559 AD. MA-XRF appeared an outstanding tool for first-line screening of stained-glass windows, providing readily interpretable information on glass type, coloring and alteration processes. In particular, the chemical imaging technique allowed distinguishing unambiguously the surviving original glass panes from later additions, thereby ensuring a correct historical understanding. From a more practical point of view, the experiments supplied accurate schemes that can be directly incorporated in condition reports and assist designing the ensuing conservation approach. (C0 2019 Elsevier Masson SAS. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491173800017 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167564 Serial 8191
Permanent link to this record
 

 
Author Álvarez-Martín, A.; De Winter, S.; Nuyts, G.; Hermans, J.; Janssens, K.; van der Snickt, G.
Title Multi-modal approach for the characterization of resin carriers in Daylight Fluorescent Pigments Type (down) A1 Journal article
Year 2020 Publication Microchemical Journal Abbreviated Journal Microchem J
Volume 159 Issue Pages 105340
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Almost seventy years after artists such as Frank Stella (1936), Andy Warhol (1928-1987), James Rosenquist (1933-2017), Herb Aach (1923-1985) and Richard Bowman (1918-2001) started to incorporate Daylight Fluorescent Pigments (DFPs) in their artworks, the extent of the conservation problems that are associated with these pigments has increased progressively. Since their first appearance on the market, their composition has constantly been improved in terms of permanency. However, conservation practices on the artworks that are used in, are complicated by the fact that the composition of DFPs is proprietary and the information provided by the manufactures is limited. To be able to propose adequate conservation strategies for artworks containing DFPs, a thorough understanding of the DFPs composition must be acquired. In contrast with previous research that concentrated on identification of the coloring dye, this paper focuses on the characterization of the resin, used as the carrier for the dye. The proposed approach, involving ATR-FTIR, SPME-GC-MS and XRF analysis, provided additional insights on the organic and inorganic components of the resin. Using this approach, we investigated historical DFPs and new formulations, as well as different series from the main manufacturing companies (DayGlo, Swada, Radiant Color and Kremer) in order to obtain a full characterization of DFPs used by the artists along the years. First, the initial PCA-assisted ATR-FTIR spectroscopy allowed for an efficient classification of the main monomers in the resin polymer. Next, a further distinction was made by mass spectrometry and XRF which were optimized to allow a more specific classification of the resin and for detection of additives. In this paper we show the potential of SPME-GC-MS, never applied for the characterization of artistic materials, at present undervalued for heritage science purposes. We anticipate that this information will be highly relevant in the future stability studies and for defining (preventive) conservation strategies of fluorescent artworks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598761400009 Publication Date 2020-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access
Notes Approved Most recent IF: 4.8; 2020 IF: 3.034
Call Number UA @ admin @ c:irua:175083 Serial 8286
Permanent link to this record
 

 
Author Koldeweij, J.; Hoogstede, L.; Ilsink, M.; Janssens, K.; De Keyser, N.; Gotink, R.K.; Legrand, S.; Nauhaus, J.M.; van der Snickt, G.; Spronk, R.
Title The patron of Hieronymus Bosch's 'Last Judgment' triptych in Vienna Type (down) A1 Journal article
Year 2018 Publication The Burlington magazine Abbreviated Journal
Volume 160 Issue 1379 Pages 106-111
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A technical examination of the Last Judgment triptych by Hieronymus Bosch in the Paintings Gallery of the Academy of Fine Arts, Vienna, has revealed a painted escutcheon with the coat of arms of the Burgundian court official Hippolyte de Berthoz underneath the current surface of the right outer wing. This allows him to be firmly identified as the painting's patron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458246800007 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181267 Serial 8656
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; de Man, D.; Alfeld, M.; Callewaert, T.; van der Snickt, G.; Janssens, K.; Dik, J.
Title The role of smalt in complex pigment mixtures in Rembrandt'sHomer1663: combining MA-XRF imaging, microanalysis, paint reconstructions and OCT Type (down) A1 Journal article
Year 2020 Publication Heritage science Abbreviated Journal
Volume 8 Issue 1 Pages 90-19
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract As part of the NWO Science4ArtsREVISRembrandtproject (2012-2018), novel chemical imaging techniques were developed and applied to the study of Rembrandt's late experimental painting technique (1651-1669). One of the unique features in his late paintings is his abundant use of smalt: a blue cobalt glass pigment that he often combined with organic lake pigments, earth pigments and blacks. Since most of these smalt-containing paints have discolored over time, we wanted to find out more about how these paintings may have originally looked, and what the role of smalt was in his paint. This paper reports on the use of smalt in complex pigment mixtures in Rembrandt'sHomer(1663), Mauritshuis, The Hague. Macroscopic X-ray fluorescence imaging (MA-XRF) assisted by computational analysis, in combination with SEM-EDX analysis of paint cross-sections, provides new information about the distribution and composition of the smalt paints in the painting. Paint reconstructions were carried out to investigate the effect of different percentages of smalt on the overall color, the drying properties, translucency and texture of the paint. Results show that the influence of (the originally blue) smalt on the intended color of the paint of theHomeris minimal. However, in mixtures with high percentages of smalt, or when combined with more transparent pigments, it was concluded that the smalt did produce a cooler and darker paint. It was also found that the admixture of opaque pigments reduced the translucent character of the smalt. The drying tests show that the paints with (cobalt-containing) smalt dried five times faster compared to those with glass (without cobalt). Most significantly, the texture of the paint was strongly influenced by adding smalt, creating a more irregular surface topography with clearly pronounced brushstrokes. Optical coherence tomography (OCT) was used as an additional tool to reveal differences in translucency and texture between the different paint reconstructions. In conclusion, this study confirmed earlier assumptions that Rembrandt used substantial amounts of smalt in his late paintings, not for its blue color, but to give volume and texture to his paints, to deepen their colors and to make them dry faster.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565893700001 Publication Date 2020-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access
Notes Approved Most recent IF: 2.5; 2020 IF: NA
Call Number UA @ admin @ c:irua:171995 Serial 8659
Permanent link to this record
 

 
Author Ortega Saez, N.; Arno, R.; Marchetti, A.; Cauberghs, S.; Janssens, K.; Van der Snickt, G.; Al-Emam, E.
Title Towards a novel strategy for soot removal from water-soluble materials : the synergetic effect of hydrogels and cyclomethicone on gelatine emulsion-based photographs Type (down) A1 Journal article
Year 2023 Publication Heritage science Abbreviated Journal
Volume 11 Issue 1 Pages 78-17
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Gels are a popular cleaning method for paper conservators and a lot of research has been done concerning gel cleaning of paper objects over the last 15 years. Despite the close interconnection between the conservation fields of paper and photographic material, research on using gels for cleaning photographs is very scarce. However, gels can provide an excellent cleaning method for photographic material. Cleaning silver gelatine prints with aqueous solvents is very complex due to the hydrophilic properties and fragility of the gelatine layer which makes mechanical cleaning difficult. The properties of gels ensure better control over the flow and evaporation of the solvent, facilitating the cleaning process. This study is the first insight into the viability of using gellan gum gel and polyvinyl acetate-borax (PVAc-borax) gel to clean contaminants from the surface of silver gelatine photographs. It is based on self-made samples that were artificially aged and contaminated with soot. Water, ethanol (EtOH), and Kodak Photo-flo were studied as solvents to remove the soot from the silver gelatine-based prints. These solvents were loaded into the aforementioned gels and applied to the samples in two different methods. These gel cleaning methods were subsequently compared with traditional cleaning methods. In addition, the usage of cyclomethicone D4 as a protective mask for the gelatine layer was studied. Measuring methods used to evaluate the cleaning were visual comparison, microscopic observation, and densitometry. ATR-FTIR measurements were also conducted to investigate potential side-effects of the cleaning methods on the prints, such as unwanted chemical transformations or the presence of gel residues after the treatments. Most of the gel cleaning methods within this study proved to be inadequate, with the exception of the gellan gum gel loaded with 30% EtOH. It was used as a granulated gel applied mechanically on a print saturated with cyclomethicone (octamethylcyclotetrasiloxane D4). Cyclomethicone proved to be a very effective protective barrier for the water-sensitive gelatine layer with minimal reduction in cleaning effectiveness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000970139500001 Publication Date 2023-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:196445 Serial 8945
Permanent link to this record
 

 
Author Deleu, N.; Hillen, M.; Steenackers, G.; Borms, G.; Janssens, K.; Van der Stighelen, K.; Van der Snickt, G.
Title Combined macro X-ray fluorescence (MA-XRF) and pulse phase thermography (PPT) imaging for the technical study of panel paintings Type (down) A1 Journal article
Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 270 Issue Pages 125533-11
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation. By examining three 16thand 17th-century panel paintings we assess the extent in which combined MA-XRF and PPT contributes to a better understanding of two commonly encountered interventions to panel paintings: (a) Anstuckungen (enlargement of the panel) or (b) substitutions (replacement of part of the panel). Yielding information from different depths of the painting, these two techniques proved highly complementary with IRR and XRR, expanding the understanding of the build-up, genesis, and material history of the paintings. While MA-XRF documented the interventions to the wooden substrate indirectly by revealing variations in painting materials, paint handling and/ or layer sequence between the original part and the extended or replaced planks, PPT proved beneficial for the study of the wooden support itself, by providing a clear image of the wood structure quasi-free of distortion by the superimposed paint or cradling. XRR, on the other hand, revealed other features from the wood structure, not visible with PPT, and allowed looking through the wooden panels, revealing e.g. the dowels used for joining the planks. Additionally, IRR visualised dissimilarities in the underdrawings. In this way, the results indicate that PPT has the potential to become an acknowledged add-on to the expanding set of imaging methods for paintings, especially when used in combination with MA-XRF, IRR and XRR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144098200001 Publication Date 2023-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes Approved Most recent IF: 6.1; 2024 IF: 4.162
Call Number UA @ admin @ c:irua:203764 Serial 9193
Permanent link to this record