|   | 
Details
   web
Records
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A.
Title (down) Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 35 Issue 35 Pages 217-230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000347285800014 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited 9 Open Access
Notes Approved Most recent IF: 2.355; 2015 IF: 2.056
Call Number c:irua:118882 Serial 2108
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z.
Title (down) Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398327900002 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Peeters, F.M.
Title (down) Melting transitions in isotropically confined three-dimensional small Coulomb clusters Type A1 Journal article
Year 2007 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 76 Issue 3 Pages 031107,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular dynamic simulations are performed to investigate the melting process of small three-dimensional clusters (i.e., systems with one and two shells) of classical charged particles trapped in an isotropic parabolic potential. The confined particles interact through a repulsive potential. We find that the ground-state configurations for systems with N=6, 12, 13, and 38 particles interacting through a Coulomb potential are magic clusters. Such magic clusters have an octahedral or icosahedral symmetry and are found to have a large stability against intrashell diffusion leading to an intershell melting transition prior to the intrashell and radial melting process. For systems with two shells a local radial melting of subshells is found at low temperatures resulting in a structural transition leading to an increased symmetry of the ordered system. Using Lindemanns criterion the different melting temperatures are determined and the influence of the screening of the interparticle interaction was investigated. A normal mode analysis is performed and some of the normal modes are found to be determinantal for the melting process.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249785800015 Publication Date 2007-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 28 Open Access
Notes Approved Most recent IF: 2.366; 2007 IF: 2.483
Call Number UA @ lucian @ c:irua:65693 Serial 1990
Permanent link to this record
 

 
Author Hervieu, M.; Michel, C.; Martin, C.; Huvé, M.; Van Tendeloo, G.; Maignan, A.; Pelloquin, D.; Goutenoire, F.; Raveau, B.
Title (down) Mécanismes de la non-stoechiométrie dans les nouveaux supraconducteurs à haute Tc Type A1 Journal article
Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
Volume 4 Issue Pages 2057-2067
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1994PT17900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4320 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10041 Serial 1973
Permanent link to this record
 

 
Author Kong, M.; Ferreira, W.P.; Partoens, B.; Peeters, F.M.
Title (down) Magnetic field dependence of the normal mode spectrum of a planar complex plasma cluster Type A1 Journal article
Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 32 Issue 2,2 Pages 569-572
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000222278400007 Publication Date 2004-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 4 Open Access
Notes Approved Most recent IF: 1.052; 2004 IF: 1.042
Call Number UA @ lucian @ c:irua:62453 Serial 1871
Permanent link to this record
 

 
Author Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M.
Title (down) Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
Year 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.
Volume 6 Issue 2 Pages 127-157
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000750257400005 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907
Permanent link to this record
 

 
Author Smith, G.J.; Diomede, P.; Gibson, A.R.; Doyle, S.J.; Guerra, V.; Kushner, M.J.; Gans, T.; Dedrick, J.P.
Title (down) Low-pressure inductively coupled plasmas in hydrogen : impact of gas heating on the spatial distribution of atomic hydrogen and vibrationally excited states Type A1 Journal article
Year 2024 Publication Plasma sources science and technology Abbreviated Journal
Volume 33 Issue 2 Pages 025002-25020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10-20 Pa or 0.075-0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001154851700001 Publication Date 2024-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.8; 2024 IF: 3.302
Call Number UA @ admin @ c:irua:203866 Serial 9054
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Dinescu, M.; Chitica, N.; Nistor, L.C.; van Landuyt, J.; Barborica, A.
Title (down) Laser induced phase transition in iron thin films Type A1 Journal article
Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
Volume 4 Issue Pages 127-130
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1994NT08700028 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10003 Serial 1787
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.
Title (down) Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge Type A1 Journal article
Year 2001 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 63 Issue 2Part 2 Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The global relaxation process after pulsed laser induced photodetachment in a rf electronegative SIH4 discharge is studied by a self-consistent kinetic one-dimensional particle-in-cell-Monte Carlo model. Our results reveal a comprehensive physical picture of the relaxation process, including the main plasma variables, after a perturbation up to the full recovery of the steady state. A strong influence of the photodetachment on the discharge is found, which results from an increase of the electron density, leading to a weaker bulk field, and hence to a drop in the high energy tail of the electron energy distribution function (EEDF), a reduction of the reaction rates of electron impact attachment and ionization, and a subsequent decrease of the positive and negative ion densities. All the plasma quantities related to electrons recover synchronously. The recovery time of the ion densities is about 1-2 orders of magnitude longer than that of the electrons due to different recovery mechanisms. The modeled behavior of all the charged particles agrees very well with experimental results from the literature. In addition, our work clarifies some unclear processes assumed in the literature, such as the relaxation of the EEDF, the evolution of the electric field, and the recovery of negative ions.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000167022500057 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes Approved Most recent IF: 2.366; 2001 IF: 2.235
Call Number UA @ lucian @ c:irua:34148 Serial 1757
Permanent link to this record
 

 
Author Leigh, S.; Doyle, S.J.; Smith, G.J.; Gibson, A.R.; Boswell, R.W.; Charles, C.; Dedrick, J.P.
Title (down) Ionization and neutral gas heating efficiency in radio frequency electrothermal microthrusters : the role of driving frequency Type A1 Journal article
Year 2024 Publication Physics of plasmas Abbreviated Journal
Volume 31 Issue 2 Pages 023509-23513
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The development of compact, low power, charge-neutral propulsion sources is of significant recent interest due to the rising application of micro-scale satellite platforms. Among such sources, radio frequency (rf) electrothermal microthrusters present an attractive option due to their scalability, reliability, and tunable control of power coupling to the propellant. For micropropulsion applications, where available power is limited, it is of particular importance to understand how electrical power can be transferred to the propellant efficiently, a process that is underpinned by the plasma sheath dynamics. In this work, two-dimensional fluid/Monte Carlo simulations are employed to investigate the effects of applied voltage frequency on the electron, ion, and neutral heating in an rf capacitively coupled plasma microthruster operating in argon. Variations in the electron and argon ion densities and power deposition, and their consequent effect on neutral-gas heating, are investigated with relation to the phase-averaged and phase-resolved sheath dynamics for rf voltage frequencies of 6-108 MHz at 450 V. Driving voltage frequencies above 40.68 MHz exhibit enhanced volumetric ionization from bulk electrons at the expense of the ion heating efficiency. Lower driving voltage frequencies below 13.56 MHz exhibit more efficient ionization due to secondary electrons and an increasing fraction of rf power deposition into ions. Thermal efficiencies are improved by a factor of 2.5 at 6 MHz as compared to the more traditional 13.56 MHz, indicating a favorable operating regime for low power satellite applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001207449000001 Publication Date 2024-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.115
Call Number UA @ admin @ c:irua:205506 Serial 9156
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title (down) Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399278100002 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550
Permanent link to this record
 

 
Author Rezaei, F.; Gorbanev, Y.; Chys, M.; Nikiforov, A.; Van Hulle, S.W.H.; Cos, P.; Bogaerts, A.; De Geyter, N.
Title (down) Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers Type A1 Journal article
Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 15 Issue 6 Pages 1700226
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrospinning is a versatile technique for the fabrication of polymer-based nano/microfibers. Both physical and chemical characteristics of pre-electrospinning polymer solutions affect the morphology and chemistry of electrospun nanofibers. An atmospheric-pressure plasma jet has previously been shown to induce physical modifications in polylactic acid (PLA) solutions. This work aims at investigating the plasma-induced chemistry in organic solutions of PLA, and their effects on the resultant PLA nanofibers. Therefore, very broad range of gas, liquid, and solid (nanofiber) analyzing techniques has been applied. Plasma alters the acidity of the solutions. SEM studies illustrated that complete fiber morphology enhancement only occurred when both PLA and solvent molecules were exposed to preelectrospinning plasma treatment.

Additionally, the surface

chemistry of the PLA nanofibers

was mostly preserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436407300005 Publication Date 2018-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 12 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, G.0379.15N ; FP7 Ideas: European Research Council, 335929 (PLASMATS) ; European Marie Sklodowska-Curie Individual Fellowship “LTPAM”, 657304 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:152173 Serial 4992
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A.
Title (down) Investigation of O atom kinetics in O2plasma and its afterglow Type A1 Journal Article
Year 2024 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.
Volume 33 Issue 4 Pages 045017
Keywords A1 Journal Article; oxygen plasma, pseudo-1D plug-flow kinetic model, O atoms, low-pressure validation, atmospheric pressure microwave torch; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We have developed a comprehensive kinetic model to study the O atom kinetics in an O<sub>2</sub>plasma and its afterglow. By adopting a pseudo-1D plug-flow formalism within the kinetic model, our aim is to assess how far the O atoms travel in the plasma afterglow, evaluating its potential as a source of O atoms for post-plasma gas conversion applications. Since we could not find experimental data for pure O<sub>2</sub>plasma at atmospheric pressure, we first validated our model at low pressure (1–10 Torr) where very good experimental data are available. Good agreement between our model and experiments was achieved for the reduced electric field, gas temperature and the densities of the dominant neutral species, i.e. O<sub>2</sub>(a), O<sub>2</sub>(b) and O. Subsequently, we confirmed that the chemistry set is consistent with thermodynamic equilibrium calculations at atmospheric pressure. Finally, we investigated the O atom densities in the O<sub>2</sub>plasma and its afterglow, for which we considered a microwave O<sub>2</sub>plasma torch, operating at a pressure between 0.1 and 1 atm, for a flow rate of 20 slm and an specific energy input of 1656 kJ mol<sup>−1</sup>. Our results show that for both pressure conditions, a high dissociation degree of ca. 92% is reached within the discharge. However, the O atoms travel much further in the plasma afterglow for<italic>p</italic>= 0.1 atm (9.7 cm) than for<italic>p</italic>= 1 atm (1.4 cm), attributed to the longer lifetime (3.8 ms at 0.1 atm vs 1.8 ms at 1 atm) resulting from slower three-body recombination kinetics, as well as a higher volumetric flow rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001209453500001 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access
Notes This research was supported by the Horizon Europe Framework Program ‘Research and Innovation Actions’ (RIA), Project CANMILK (Grant No. 101069491). Approved Most recent IF: 3.8; 2024 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:205920 Serial 9125
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W.; Gijbels, R.
Title (down) Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model Type A1 Journal article
Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 32 Issue 2 Pages 691-698
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000222278400026 Publication Date 2004-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 29 Open Access
Notes Approved Most recent IF: 1.052; 2004 IF: 1.042
Call Number UA @ lucian @ c:irua:46379 Serial 1732
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N.
Title (down) Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 1 Pages 013510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629931300002 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:177669 Serial 6767
Permanent link to this record
 

 
Author Saeed, A.; Khan, A.W.; Shafiq, M.; Jan, F.; Abrar, M.; Zaka-ul-Islam, M.; Zakaullah, M.
Title (down) Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy Type A1 Journal article
Year 2014 Publication Plasma science & technology Abbreviated Journal Plasma Sci Technol
Volume 16 Issue 4 Pages 324-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA.cm(-2) to 4 mA.cm(-2). The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N-2]) generation. It is observed that in an N-2-H-2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H-2 in the mixture at 3 mbar pressure and current density of 4 mA.cm(-2).
Address
Corporate Author Thesis
Publisher Institute of Plasma Physics, the Chinese Academy of Sciences Place of Publication Beijing Editor
Language Wos 000335909600005 Publication Date 2014-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1009-0630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.83 Times cited 5 Open Access
Notes Approved Most recent IF: 0.83; 2014 IF: 0.579
Call Number UA @ lucian @ c:irua:117686 Serial 1728
Permanent link to this record
 

 
Author Cangi, A.; Moldabekov, Z.A.; Neilson, D.
Title (down) International Conference on “Strongly Coupled Coulomb Systems” (July 24-29, 2022, Görlitz, Germany) Type Editorial
Year 2023 Publication Contributions to plasma physics Abbreviated Journal
Volume 63 Issue 9-10 Pages e202300110-3
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001100083800001 Publication Date 2023-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042; 1521-3986 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access
Notes Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number UA @ admin @ c:irua:201156 Serial 9051
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A.
Title (down) Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 7 Pages 074003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839466500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M.
Title (down) Inhomogeneous melting in anisotropically confined two-dimensional clusters Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 74 Issue 3 Pages 031107,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240870100019 Publication Date 2006-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 25 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:60998 Serial 1668
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A.
Title (down) Influence of Gap Size and Dielectric Constant of the Packing Material on the Plasma Behaviour in a Packed Bed DBD Reactor: A Fluid Modelling Study: Influence of Gap Size and Dielectric Constant… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600129
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge (DBD) was studied by means of fluid modelling, to investigate the influence of the dielectric constant of the packing on the plasma characteristics, for two different gap sizes. The electric field strength and electron temperature are much more enhanced in a microgap reactor than

in a mm-gap reactor, leading to more current peaks per half-cycle, but also to non-quasineutral plasma. Increasing the dielectric constant enhances the electric field further, but only up to a certain value of dielectric constant, being 9 for a microgap and 100 for a mm-gap reactor. The enhanced electric field results in a higher electron temperature, but also lower electron density. This last one strongly affects the reaction rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000010 Publication Date 2016-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 23 Open Access Not_Open_Access
Notes Acknowledgements: This research was carried out in the framework of the network on Physical Chemistry of Plasma- Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K. Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142639 Serial 4560
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.; Gijbels, R.
Title (down) Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 72 Issue Pages 056402,1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In dc magnetrons the electrons emitted from the cathode may return there due to the applied magnetic field. When that happens, they can be recaptured or reflected back into the discharge, depending on the value of the reflection coefficient (RC). A 2d3v (two-dimensional in coordinate and three-dimensional in velocity space) particle-in-cellMonte Carlo model, including an external circuit, is developed to determine the role of the electron recapture in the discharge processes. The detailed discharge structure as a function of RC for two pressures (4 and 25mtorr) is studied. The importance of electron recapture is clearly manifested, especially at low pressures. The results indicate that the discharge characteristics are dramatically changed with varying RC between 0 and 1. Thus, the electron recapture at the cathode appears to be a significant mechanism in magnetron discharges and RC a very important parameter in their correct quantitative description that should be dealt with cautiously.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000233603200089 Publication Date 2005-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 29 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:54667 Serial 1621
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title (down) Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 84 Issue 3 Pages 031405,1-031405,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000296495000007 Publication Date 2011-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:93612 Serial 1615
Permanent link to this record
 

 
Author Saraiva, M.; Chen, H.; Leroy, W.P.; Mahieu, S.; Jehanathan, N.; Lebedev, O.; Georgieva, V.; Persoons, R.; Depla, D.
Title (down) Influence of Al content on the properties of MgO grown by reactive magnetron sputtering Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue S:1 Pages S751-S754
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In the present work, reactive magnetron sputtering in DC mode was used to grow complex oxide thin films, starting from two separate pure metal targets. A series of coatings was produced with a stoichiometry of the film ranging from MgO, over MgxAlyOz to Al2O3. The surface energy, crystallinity, hardness, refractive index, and surface roughness were investigated. A relationship between all properties studied and the Mg content of the samples was found. A critical compositional region for the Mg-Al-O system where all properties exhibit a change was noticed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000272302900144 Publication Date 2009-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access
Notes Iwt Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:79363 Serial 1613
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title (down) Influence of a defect particle on the structure of a classical two-dimensional cluster Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 046605,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000221253000064 Publication Date 2004-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 27 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:62443 Serial 1611
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A.
Title (down) Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 7 Pages 678-684
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000340416300007 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 3 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118063 Serial 1598
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
Title (down) Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 162-171
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000350275400005 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Aerts, R.; Snoeckx, R.; Bogaerts, A.
Title (down) In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 10 Pages 985-992
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000344180900008 Publication Date 2014-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 29 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118302 Serial 1575
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.-Z.; Bogaerts, A.
Title (down) Importance of surface charging during plasma streamer propagation in catalyst pores Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 6 Pages 065009
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest, but the underlying mechanisms are far from understood. Different catalyst materials will have different chemical effects, but in addition, they might also have different dielectric constants, which will affect surface charging, and thus the plasma behavior. In this work, we demonstrate that surface charging plays an important role in the streamer propagation and discharge enhancement inside catalyst pores, and in the plasma distribution along the dielectric surface, and this role greatly depends on the dielectric constant of the material. For εr50, surface charging causes the plasma to spread along the dielectric surface and inside the pores, leading to deeper plasma streamer penetration, while for εr>50 or for metallic coatings, the discharge is more localized, due to very weak surface charging. In addition, at εr=50, the significant surface charge density near the pore entrance causes a large potential drop at the sharp pore edges, which induces a strong electric field and results in most pronounced plasma enhancement near the pore entrance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436845700002 Publication Date 2018-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 13 Open Access OpenAccess
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the TOP-BOF project of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:152243 Serial 4995
Permanent link to this record
 

 
Author Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A.
Title (down) Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 15 Issue 8 Pages 1800022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441895700004 Publication Date 2018-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008
Permanent link to this record
 

 
Author Lin, A.; Truong, B.; Fridman, G.; Friedman, A.A.; Miller, V.
Title (down) Immune cells enhance selectivity of nanosecond-pulsed DBD plasma against tumor cells Type A1 Journal article
Year 2017 Publication Plasma medicine Abbreviated Journal
Volume 7 Issue 1 Pages 85-96
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cancer immunotherapy is a promising strategy that engages the patient's immune system to kill cancer cells selectively while sparing normal tissue. Treatment of macrophages with a nanosecond-pulsed dielectric barrier discharge directly enhanced their cytotoxic activity against tumor cells but not normal cells. These results underscore the clinical potential of plasma for cancer immunotherapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:155657 Serial 8058
Permanent link to this record