toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skaggs, C.M.; Kang, C.-J.; Perez, C.J.; Hadermann, J.; Emge, T.J.; Frank, C.E.; Pak, C.; Lapidus, S.H.; Walker, D.; Kotliar, G.; Kauzlarich, S.M.; Tan, X.; Greenblatt, M. pdf  url
doi  openurl
  Title (down) Ambient and high pressure CuNiSb₂ : metal-ordered and metal-disordered NiAs-type derivative pnictides Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 19 Pages 14058-14069  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P (3) over bar m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P6(3)/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 degrees C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P (3) over bar m1 space group, corroborated by transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580381700028 Publication Date 2020-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number UA @ admin @ c:irua:174331 Serial 6714  
Permanent link to this record
 

 
Author Ramezanipour, F.; Greedan, J.E.; Siewenie, J.; Donaberger, R.L.; Turner, S.; Botton, G.A. pdf  doi
openurl 
  Title (down) A vacancy-disordered, oxygen-deficient perovskite with long-range magnetic ordering : local and average structures and magnetic properties of Sr2Fe1.5Cr0.5O5 Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 4 Pages 2638-2644  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The local and average crystal structures and magnetic properties of the oxygen-deficient perovskite Sr2Fe1.5Cr0.5O5+y were studied using powder X-ray and neutron diffraction, neutron-pair distribution function analysis, and electron energy-loss spectroscopy. This material crystallizes in the cubic Pm3̅m space group, with a = 3.94491(14) Å. The oxygen vacancies are distributed randomly throughout the perovskite-type structure, and the average coordination number of the Fe(Cr) sites is 5. Refinement of the neutron diffraction data indicates y 0.05. This is in discordance with an earlier report on a material with the same nominal composition and cell constant. Electron energy-loss Cr L2,3-edge spectroscopy shows that Cr3+ is present, which is also contrary to previous speculation. Neutron-pair distribution function studies show that a brownmillerite-like model involving ordered vacancies and alternating octahedral and tetrahedral coordination at the metal sites, gives a better description of the local structure out to 5 Å. A remarkable phenomenon determined by neutron diffraction in Sr2Fe1.5Cr0.5O5 is the occurrence of a long-range G-type antiferromagnetic ordering with Tc ≈ 565 K because cubic oxygen-deficient perovskites with B-site disorder usually do not undergo transitions to magnetically ordered states. The observation of long-range antiferromagnetic order and the Tc value are in accordance with previous Mössbauer spectroscopic studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000300466300079 Publication Date 2012-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:95039 Serial 3828  
Permanent link to this record
 

 
Author Avila-Brande, D.; Otero-Díaz, L.C.; Landa-Cánovas, A.R.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) A new Bi4Mn1/3W2/3O8Cl Sillén-Aurivillius intergrowth: synthesis and structural characterisation by quantitative transmission electron microscopy Type A1 Journal article
  Year 2006 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 9 Pages 1853-1858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis and structural characterisation of a new phase with nominal composition Bi4Mn1/3W2/3O8Cl is presented. Conventional and analytical transmission electron microscopy are used to determine the composition, unit-cell symmetry and space group of the compound, whereas a structural model is deducted by exit-wave reconstruction in the transmission electron microscope. This technique allows the microscope information limit of 1.1 angstrom to be reached and the (light) oxygen atoms in the presence of heavier atoms (Bi, W, Mn) to be imaged. The average structure is refined from Xray powder diffraction data using the Rietveld method yielding an orthorhombic unit cell with lattice parameters a 5.467(4) angstrom, b = 5.466(7) angstrom and c = 14.159(3) angstrom and space group Cm2m, which could be described as a Sillen-Aurivillius intergrowth. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000237617800016 Publication Date 2006-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.444; 2006 IF: 2.704  
  Call Number UA @ lucian @ c:irua:59436 Serial 2335  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: