|   | 
Details
   web
Records
Author Kumar, N.; Shaw, P.; Razzokov, J.; Yusupov, M.; Attri, P.; Uhm, H.S.; Choi, E.H.; Bogaerts, A.
Title (down) Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy Type A1 Journal article
Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 8 Issue 18 Pages 9887-9894
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430451800036 Publication Date 2018-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 1 Open Access OpenAccess
Notes We gratefully acknowledge nancial support from the Research Foundation – Flanders (FWO), grant numbers 12J5617N, 1200216N and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). We are also thankful to the Plasma Bioscience Research Center at Kwangwoon University for providing the core facilities for the experimental work as well as nancial support by the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Founda Approved Most recent IF: 3.108
Call Number PLASMANT @ plasmant @c:irua:149564 Serial 4909
Permanent link to this record
 

 
Author Van Dyck, P.M.; Török, S.B.; Van Grieken, R.E.
Title (down) Enhancement effect in X-ray fluorescence analysis of environmental samples of medium thickness Type A1 Journal article
Year 1986 Publication Analytical chemistry Abbreviated Journal
Volume 58 Issue 8 Pages 1761-1766
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1986C955500040 Publication Date 2005-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116522 Serial 7915
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Golubovic, D.S.; Peeters, F.M.; Moshchalkov, V.V.
Title (down) Enhancement and decrease of critical current due to suppression of superconductivity by a magnetic field Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 13 Pages 134505,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000250619800084 Publication Date 2007-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:67347 Serial 1059
Permanent link to this record
 

 
Author Kukhlevsky, S.V.; Mechler, M.; Csapo, L.; Janssens, K.; Samek, O.
Title (down) Enhanced transmission versus localization of a light pulse by a subwavelength metal slit Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue 19 Pages 195428,1-9
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225477800152 Publication Date 2004-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ admin @ c:irua:50849 Serial 5604
Permanent link to this record
 

 
Author Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; Hamer, M.; Terry, D.J.; Peters, J.J.P.; Sanchez, A.M.; Partoens, B.; Haigh, S.J.; Milošević, M.V.; Grigorieva, I., V
Title (down) Enhanced superconductivity in few-layer TaS₂ due to healing by oxygenation Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3808-3818
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (T-c) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer T-c in ultrathin materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300114 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 16 Open Access
Notes ; This work was supported by Research Foundation-Flanders (FWO). J.Be. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. S.J.H., D.H., and S.F. would like to thank the Engineering and Physical Sciences Research Council (EPSRC) U.K (grants EP/R031711/1, EP/P009050/1 and the Graphene NOWNANO CDT) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement ERC-2016-STG-EvoluTEM-715502, the Hetero2D Synergy grant and EC-FET Graphene Flagship) for funding. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170264 Serial 6507
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Albino Aguiar, J.; Peeters, F.M.
Title (down) Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 2 Pages 024501-24508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the Ginzburg-Landau (GL) theory, we calculate the stability of sample symmetry-induced vortex-antivortex molecules in a mesoscopic superconducting bilayer exposed to a homogeneous magnetic field. We demonstrate the conditions under which the two condensates cooperatively broaden the field-temperature stability range of the composite (joint) vortex-antivortex state. In cases when such broadening is not achieved, a reentrance of the vortex-antivortex state is found at lower temperatures. In a large portion of the phase diagram noncomposite states are possible, in which the antivortex is present in only one of the layers. In this case, we demonstrate that the vortex-antivortex molecule in one of the layers can be pinned and enlarged by interaction with a vortex molecule in the other. Using analogies in the respective GL formalisms, we map our findings for the bilayer onto mesoscopic two-band superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313029800003 Publication Date 2013-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Brazilian science agencies FACEPE/CNPq under Grant No. APQ-0589-1.05/08 and CNPq under Grant No. 309832/2007-1, and the CNPq-FWO cooperation program under Grant No. 490681/2010-7. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:105925 Serial 1058
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title (down) Enhanced stability of the square lattice of a classical bilayer Wigner crystal Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 60 Issue Pages 14665-14674
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000084141700045 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:27004 Serial 1057
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title (down) Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 49 Pages 28302-28309
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453488300053 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:156229 Serial 5210
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title (down) Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 23 Pages 233109,1-233109,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285364000067 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Breynaert, E.; Emmerich, J.; Mustafa, D.; Bajpe, S.R.; Altantzis, T.; Van Havenbergh, K.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.;
Title (down) Enhanced self-assembly of metal oxides and metal-organic frameworks from precursors with magnetohydrodynamically induced long-lived collective spin states Type A1 Journal article
Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 26 Issue 30 Pages 5173-5178
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Magneto-hydrodynamic generation of long-lived collective spin states and their impact on crystal morphology is demonstrated for three different, technologically relevant materials: COK-16 metal organic framework, manganese oxide nanotubes, and vanadium oxide nano-scrolls.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000340546300015 Publication Date 2014-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 7 Open Access OpenAccess
Notes IAP-PAI; Marie Curie IEF; 262348 ESMI; 335078 COLOURATOM; 246791 COUNTATOMS; IWT; Methusalem; FWO; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 19.791; 2014 IF: 17.493
Call Number UA @ lucian @ c:irua:118827 Serial 1053
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T.
Title (down) Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000936694800001 Publication Date 2023-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136
Call Number EMAT @ emat @c:irua:195228 Serial 7249
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A.
Title (down) Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy
Volume 89 Issue B Pages 106473
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703592700002 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 12.343
Call Number UA @ admin @ c:irua:182579 Serial 7914
Permanent link to this record
 

 
Author Blidar, A.; Trashin, S.; Carrion, E.N.; Gorun, S.M.; Cristea, C.; De Wael, K.
Title (down) Enhanced photoelectrochemical detection of an analyte triggered by its concentration by a singlet oxygen-generating fluoro photosensitizer Type A1 Journal article
Year 2020 Publication Acs Sensors Abbreviated Journal Acs Sensors
Volume 5 Issue 11 Pages 3501-3509
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A.M-1.cm(-2), respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595550100021 Publication Date 2020-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.9 Times cited Open Access
Notes Approved Most recent IF: 8.9; 2020 IF: NA
Call Number UA @ admin @ c:irua:176057 Serial 7913
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D' Haen, J.; Verbeeck, J.; Leou, K.-C.; Lin, I.-N.; Haenen, K.
Title (down) Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 29444
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/mum, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/mum with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
Address IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000379391000001 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 15 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Project G.0456.12, G0044.13N and the Methusalem “NANO” network. Kamatchi Jothiramalingam Sankaran, Stuart Turner, and Paulius Pobedinskas are Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 4.259
Call Number c:irua:134643 c:irua:134643UA @ admin @ c:irua:134643 Serial 4119
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X.
Title (down) Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
Year 2023 Publication JACS Au Abbreviated Journal JACS Au
Volume 3 Issue 5 Pages 1328-1336
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000981779300001 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G.
Title (down) Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 2 Issue 2 Pages 1400416
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349916000001 Publication Date 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 30 Open Access
Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA
Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052
Permanent link to this record
 

 
Author Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N.
Title (down) Enhanced landfill mining in view of multiple resource recovery : a critical review Type A1 Journal article
Year 2013 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 55 Issue Pages 45-55
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract In a circular economy material loops are closed by recycling of pre-consumer manufacturing scrap/residues, urban mining of End-of-Life products and landfill mining of historic (and future) urban waste streams. However, in the past landfill mining was not performed with a focus on resource recovery. This paper addresses this gap by introducing the concept of Enhanced Landfill Mining, defined as the safe conditioning, excavation and integrated valorization of landfilled waste streams as both materials and energy, using innovative transformation technologies and respecting the most stringent social and ecological criteria. The feasibility of ELFM is studied by synthesizing the research on the Closing the Circle project, the first ELFM project targeting the 18 million metric ton landfill in Houthalen-Helchteren in the East of Belgium. It is argued that Environmental Impact Assessments of ELFM projects should be wide in scope and time. Embedded in a broad resource management perspective, the worldwide potential of ELFM is highlighted, in terms of climate gains, materials and energy utilization, job creation and land reclamation. The potential is quantified for the EU-27 with its 150,000-500,000 landfills. However, for ELFM to reach its full potential, strategic policy decisions and tailored support systems, including combined incentives for material recycling, energy utilization and nature restoration, are required. (c) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322802300005 Publication Date 2012-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.715 Times cited 144 Open Access
Notes ; The authors acknowledge the European and Flemish authorities for the funding of, respectively, the EFRO project 'Closing the Circle, a demonstration of Enhanced Landfill Mining (ELFM)' and the IWT O&O Project 100517. The authors acknowledge the ELFM Consortium Members, including Karel Van Acker, Tom Van Gerven, Marc Craps, Alain De Vocht, Johan Eyckmans, Maarten Dubois, Koen Sips, Luk Umans, Maurice Ballard, Lieve Helsen and Anouk Bosmans. The authors acknowledge the members of the EU ELMIRE Consortium, in particular Hans Groot, Raffaello Cossu, William Hogland and Rainer Stegmann. Finally, the authors thank the reviewers for their critical comments and suggested improvements. ; Approved Most recent IF: 5.715; 2013 IF: 3.590
Call Number UA @ admin @ c:irua:127549 Serial 6195
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.;
Title (down) Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 24 Issue 3 Pages 372-378
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000332832500011 Publication Date 2013-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 95 Open Access
Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805
Call Number UA @ lucian @ c:irua:113090 Serial 1051
Permanent link to this record
 

 
Author Burriel, M.; Garcia, G.; Rossell, M.D.; Figueras, A.; Van Tendeloo, G.; Santiso, J.
Title (down) Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞) Type A1 Journal article
Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 19 Issue 16 Pages 4056-4062
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000248439400029 Publication Date 2007-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 22 Open Access
Notes Approved Most recent IF: 9.466; 2007 IF: 4.883
Call Number UA @ lucian @ c:irua:65937 Serial 1050
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M.
Title (down) Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 20 Pages 23112-23122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445220500071 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K.
Title (down) Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 348 Issue Pages 130659
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000701915600005 Publication Date 2021-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:181307 Serial 7912
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X.
Title (down) Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
Year 2024 Publication Energy & environment materials Abbreviated Journal
Volume Issue Pages e12755-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204495900001 Publication Date 2024-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205438 Serial 9148
Permanent link to this record
 

 
Author Duarte, M.; Daems, N.; Hereijgers, J.; Arenas Esteban, D.; Bals, S.; Breugelmans, T.
Title (down) Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor Type A1 Journal article
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 50 Issue Pages 101583-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract As part of a mitigation and adaptation approach to increasing carbon dioxide atmospheric concentrations, we report superior performance of various metal-nitrogen-doped carbon catalysts, synthesized using an easily up-scalable method, for the electrochemical reduction to carbon monoxide and/or formate at industrially relevant current densities up to 200 mAcm−2. Altering the embedded transition metal (i.e. Sn, Co, Fe, Mn and Ni) allowed to tune the selectivity towards the desired product. Mn-N-C and Fe-N-C performance was compromised by its high CO* binding energy, while Co-N-C catalyzed preferentially the HER. Ni-N-C and Sn-N-C revealed to be promising electrocatalysts, the latter being evaluated for the first time in a flow reactor. A productivity of 589 L CO m-2 h-1 at -1.39 VRHE with Ni-N-C and 751 g HCOO- m-2 h-1 at -1.47 VRHE with Sn-N-C was achieved with no signs of degradation detected after 24 h of operation at industrially relevant current densities (100 mAcm−2). Stable operation at 200 mAcm−2 led to turnover frequencies for the production of carbon products of up to 5176 h-1. These enhanced productivities, in combination with high stability, constitute an essential step towards the scalability and ultimately towards the economical valorization of CO2 electrolyzers using metal-containing nitrogen-doped catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670316000002 Publication Date 2021-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 14 Open Access OpenAccess
Notes The authors acknowledge sponsoring from the Research Foundation – Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-financed by the European Fund for Regional Development in the frame of subsidiary contract nr. 2S03-019. This work was further performed in the framework of the Catalisti MOT project D2M (“Dioxide to Monoxide (D2M): Innovative catalysis for CO2 to CO conversion”). We thank Lien Pacquets for analyzing the samples with SEM-EDX, Saskia Defoss´e for helping with the N2 physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. Approved Most recent IF: 4.292
Call Number UA @ admin @ c:irua:178151 Serial 6779
Permanent link to this record
 

 
Author Yang, Z.; Zhu, W.; Yu, D.; Bo, Y.; Li, J.
Title (down) Enhanced carbon and nitrogen removal performance of simultaneous anammox and denitrification (SAD) with mannitol addition treating saline wastewater Type A1 Journal article
Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 2 Pages 377-388
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Simultaneous anammox and denitrification (SAD) can remove carbon and nitrogen. However, its performance is suppressed under saline surroundings. In this work, mannitol was used to enhance a SAD process treating saline wastewater. RESULTS The optimum carbon and nitrogen removal was achieved at 0.2 mmol L-1 mannitol, during which ammonium removal efficiency (ARE), nitrite removal efficiency (NRE) and chemical oxygen demand (COD) removal efficiency were 96.95%, 93.70% and 90.05%, respectively. The maximum ammonium removal rate (ARR), nitrite removal rate (NRR) and the specific anammox activity (SAA) were increased by 25.49%, 55.84% and 33.83% with optimum addition (0.2 mmol L-1 mannitol) respectively. The diameter of sludge was enlarged with the addition of mannitol (<= 0.2 mmol L-1). The Tseng-Wayman model was more suitable to simulate the whole SAD process. The modified logistic model, the modified Boltzman model and the modified Gompertz model were all appropriate to describe nitrogen removal in a typical cycle with the addition of mannitol. CONCLUSION Mannitol was effective in enhancing a SAD process treating saline wastewater, and maximum nitrogen removal was achieved at mannitol = 0.2 mmol L-1. The Tseng-Wayman model satisfactorily predicted the whole SAD process treating saline wastewater with mannitol addition. (c) 2018 Society of Chemical Industry
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455262100004 Publication Date 2018-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156712 Serial 7911
Permanent link to this record
 

 
Author Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M.
Title (down) Enhanced biomethanation of kitchen waste by different pre-treatments Type A1 Journal article
Year 2011 Publication Bioresource technology Abbreviated Journal
Volume 102 Issue 2 Pages 592-599
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (

KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressuredepressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressuredepressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressuredepressure reactor, followed by freezethaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L−1 d−1) applied in the pressuredepressure and freezethaw reactors almost doubled the control reactor. From the overall analysis, the freezethaw pre-treatment was the most profitable process with a net potential profit of around 11.5 ton−1 KW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286782700022 Publication Date 2010-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:85249 Serial 7910
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M.
Title (down) Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 381 Issue 381 Pages 179-187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000349361100027 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 20 Open Access
Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970
Call Number c:irua:125284 c:irua:125284 Serial 1049
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G.
Title (down) Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
Year 2016 Publication APL materials Abbreviated Journal Apl Mater
Volume 4 Issue 4 Pages 061101
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379042400002 Publication Date 2016-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 19 Open Access
Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335
Call Number c:irua:133785 Serial 4077
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A.
Title (down) Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue 1 Pages 011010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353649900011 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 49 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:126032 Serial 1048
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M.
Title (down) Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 8032-8040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366223200023 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 18 Open Access OpenAccess
Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129598 c:irua:129598 Serial 3972
Permanent link to this record
 

 
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L.
Title (down) Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 12 Pages 6819-6827
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000337143900072 Publication Date 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 80 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:117076 Serial 1047
Permanent link to this record