|   | 
Details
   web
Records
Author Meysman, F.J.R.; Cornelissen, R.; Trashin, S.; Bonne, R.; Hidalgo-Martinez, S.; van der Veen, J.; Blom, C.J.; Karman, C.; Hou, J.-L.; Eachambadi, R.T.; Geelhoed, J.S.; De Wael, K.; Beaumont, H.J.E.; Cleuren, B.; Valcke, R.; van der Zant, H.S.J.; Boschker, H.T.S.; Manca, J.V.
Title (down) A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria Type A1 Journal article
Year 2019 Publication Nature communications Abbreviated Journal Nat Commun
Volume 10 Issue 10 Pages 4120
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Biological electron transport is classically thought to occur over nanometre distances, yet recent studies suggest that electrical currents can run along centimetre-long cable bacteria. The phenomenon remains elusive, however, as currents have not been directly measured, nor have the conductive structures been identified. Here we demonstrate that cable bacteria conduct electrons over centimetre distances via highly conductive fibres embedded in the cell envelope. Direct electrode measurements reveal nanoampere currents in intact filaments up to 10.1 mm long (>2000 adjacent cells). A network of parallel periplasmic fibres displays a high conductivity (up to 79 S cm(-1)), explaining currents measured through intact filaments. Conductance rapidly declines upon exposure to air, but remains stable under vacuum, demonstrating that charge transfer is electronic rather than ionic. Our finding of a biological structure that efficiently guides electrical currents over long distances greatly expands the paradigm of biological charge transport and could enable new bio-electronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000485216900006 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 10 Open Access
Notes ; This research was financially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) through ERC Grant 306933 (F.J.R.M.), the Research Foundation Flanders (FWO project grant G031416N), and the Netherlands Organisation for Scientific Research (VICI grant 016.VICI.170.072 to F.J.R.M.). H.J.E.B., C.J.B. and H.S.J.Z. were supported by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. R.B. is supported by an 'aspirant' grant from Research Foundation Flanders (FWO). We thank Laurine Burdorf (UAntwerpen) for help with Thiothrix cultivation, Marlies Nijemeisland (Faculty of Aerospace, TU Delft) for assistance with Raman microscopy, and Jan D'Haen (UHasselt) and Renaat Dasseville (UGent) for help with EM imaging. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:162795 Serial 5451
Permanent link to this record
 

 
Author Zeng, C.Y.; Cao, S.; Li, Y.Y.; Zhao, Z.X.; Yao, X.Y.; Ma, X.; Zhang, X.P.
Title (down) A hidden single-stage martensitic transformation from B2 parent phase to B19 ' martensite phase in an aged Ni51Ti49 alloy Type A1 Journal article
Year 2019 Publication Materials letters Abbreviated Journal Mater Lett
Volume 253 Issue 253 Pages 99-101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The aged Ni-rich NiTi shape memory alloys (SMAs) exhibit the multi-stage martensitic transformation (MMT), which has important influences on functional properties and practical applications of the NiTi SMAs. A hidden single-stage martensitic transformation from B2 parent phase to B19' martensite phase is found in an aged Ni51Ti49 alloy, which happens concurrently with a commonly observed two-stage martensitic transformation B2-R-B19' (R: martensite phase) and actually composes one stage of a multi-stage martensitic transformation (MMT) together with the two-stage one. B2-B19' martensitic transformation occurs in the NiTi matrix containing Ni4Ti3 precipitates with relatively large inter-particle space, while B2-R-B19' transformation takes place in the NiTi matrix with Ni4Ti3 precipitates having relatively small inter-particle space. (C) 2019 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482629500025 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.572 Times cited Open Access
Notes ; This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2018B0303110012 and 2017A030313323, and the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092. ; Approved Most recent IF: 2.572
Call Number UA @ admin @ c:irua:162764 Serial 5381
Permanent link to this record
 

 
Author Ma, R.; He, Y.; Feng, J.; Hu, Z.-Y.; Van Tendeloo, G.; Li, D.
Title (down) A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock Type A1 Journal article
Year 2019 Publication Journal of catalysis Abbreviated Journal
Volume 369 Issue Pages 440-449
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Precise control of elemental configurations within multimetallic nanoparticles could enable access to functional nanomaterials with significant performance benefits. Here, we present a one-pot synthesis of supported Ag@PdAg core-shell catalyst with an ordered PdAg alloy shell and an Ag core. Both the relative reduction potential and ratio of metal precursors are essential for this synthesis strategy. The distinguished properties of Ag@PdAg, particularly the electronic structure, indicates the existence of electron modification not only between Pd and Ag on PdAg shell, but between Ag core and alloy shell. The Ag@PdAg catalyst displays 97% ethene yield in the partial hydrogenation of acetylene, which is 2.0 and 8.1 times that of over PdAg alloy and pure Pd catalysts, and this is the most selective catalyst reported to data under industrial evaluation conditions. Moreover, this core-shell structure exhibits preferable stability with comparison to PdAg alloy catalyst. The facile synthesis of core-shell architecture with alloy shell structure provides a new platform for efficient catalytic transfer of chemical resource. (C) 2018 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460711700045 Publication Date 2018-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181261 Serial 6848
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H.
Title (down) A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 31 Pages 1805580
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465600000001 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 74 Open Access OpenAccess
Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:160392 Serial 5239
Permanent link to this record
 

 
Author Rutten, I.; Safdar, S.; Ven, K.; Daems, D.; Spasic, D.; Lammertyn, J.
Title (down) A DNA nanotechnology toolbox for mix-and-match biosensor design Type P3 Proceeding
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:166107 Serial 7819
Permanent link to this record
 

 
Author Schalm, O.; Cabal, A.; Anaf, W.; Leyva Pernia, D.; Callier, J.; Ortega, N.
Title (down) A decision support system for preventive conservation : from measurements towards decision making Type A1 Journal article
Year 2019 Publication The European Physical Journal Plus Abbreviated Journal
Volume 134 Issue 2 Pages 74-11
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Systems and software Modelling (AnSyMo); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract We present a decision-support system that guides heritage guardians in selecting mitigation actions to improve the indoor air quality and thus the preservation conditions of indoor collections in heritage buildings. This contribution shows that it is feasible to build a decision support system dedicated to preventive conservation when the following barriers are overcome: 1) simultaneous measurement of a wide range of environmental parameters in order to detect a larger number of undesired situations; 2) development of an algorithm to perform reproducible indoor air quality assessments; and 3) transformation of the air quality assessment into a graph that can be read intuitively without causing a wide variation of interpretations among stakeholders. An important aspect of the decision support system is that it reduces several sources of uncertainty that hamper reliable indoor air quality assessments. The possibilities of such a system are illustrated with a measurement campaign in a church where a heating system has been installed and used for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459506300002 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157817 Serial 7756
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S.
Title (down) A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472653800069 Publication Date 2019-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume 2075 Series Issue Edition
ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161422 Serial 6281
Permanent link to this record
 

 
Author Shi, X.; Ronsse, F.; Roegiers, J.; Pieters, J.G.
Title (down) 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 1: solids flow dynamics and back-mixing Type A1 Journal article
Year 2019 Publication Renewable energy Abbreviated Journal
Volume 143 Issue Pages 1465-1476
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Three-dimensional (3D) computational fluid dynamics (CFD) simulations were performed to study solids flow dynamics and solids back-mixing behavior in a screw reactor (designed for thermal conversion of dry biomass particles) based on the Eulerian-Eulerian method. Simulation results were compared against experimental data with respect to filling degree and mean residence time of particles. The mean deviations for filling degree and for mean residence time between simulation and experiment were about 0.01 and 11.4 s, respectively, which shows that the model is reasonably accurate in predicting solids flow behavior in the screw reactor. The solids flow dynamics inside the reactor were discussed. The solids residence time distribution (RTD) was calculated and the degree of solids back-mixing in the forward transportation direction of the reactor was analyzed. It was found that solids being flung over the shaft and solids back-leakage, resulting from the low solids forward transportation velocity at the clearance between the flight and the bottom shell of the screw reactor, were responsible for solids back-mixing. The degree of solids back-mixing can be reduced at higher screw rotating speeds when keeping inlet mass flow rate of solids constant. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482686100039 Publication Date 2019-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:162757 Serial 7384
Permanent link to this record
 

 
Author Piorra, A.; Hrkac, V.; Wolff, N.; Zamponi, C.; Duppel, V.; Hadermann, J.; Kienle, L.; Quandt, E.
Title (down) (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD : relaxor properties and complex microstructure Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 24 Pages 244103
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ferroelectric lead-free thin films of the composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O-3 (BCZT) were deposited by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates using a ceramic BCZT target prepared by a conventional solid state reaction. The target material itself shows a piezoelectric coefficient of d(33)=640pm/V. The (111) textured thin films possess a thickness of up to 1.1 mu m and exhibit a clamped piezoelectric response f of up to 190pm/V, a dielectric coefficient of (r)=2000 at room temperature, and a pronounced relaxor behavior. As indicated by transmission electron microscopy, the thin films are composed of longitudinal micrometersized columns with similar to 100nm lateral dimension that are separated at twin- and antiphase boundaries. The superposition phenomena according to this columnar growth were simulated based on suitable supercells. The major structural component is described as a tetragonal distorted variant of the perovskite parent type; however, frequently coherently intergrown nanodomains were observed indicating a much more complex structure that is characterized by a 7-layer modulation along the growth direction of the films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000474439600002 Publication Date 2019-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access
Notes ; The authors want to thank Dr. Martina Luysberg and Dr. Lothar Houben from the Ernst Ruska Centre in Julich for discussion and CS-corrected microscopy. Funding of this work via the DFG (No. CRC1261) “Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics” and the PAK902 is gratefully acknowledged. ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:161310 Serial 5399
Permanent link to this record