|   | 
Details
   web
Records
Author Van der Paal, J.
Title (down) Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 237 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162591 Serial 6297
Permanent link to this record
 

 
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L.
Title (down) Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 31 Pages 2182-2190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462950400038 Publication Date 2019-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 58 Open Access OpenAccess
Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:159414 Serial 5250
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A.
Title (down) Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S
Volume 126 Issue 126 Pages 105617
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489350600025 Publication Date 2019-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.075 Times cited Open Access
Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075
Call Number UA @ admin @ c:irua:163706 Serial 5387
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
Title (down) First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 132 Issue Pages 172-181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472124700023 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
 

 
Author Li, L.
Title (down) First-principles studies of novel two-dimensional dirac materials Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 152 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160527 Serial 5214
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D.
Title (down) First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.
Volume 4 Issue 14 Pages 813-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466846700004 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020
Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179
Permanent link to this record
 

 
Author Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Kondrashov, I.I.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D.
Title (down) Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range Type A1 Journal article
Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 11 Issue 14 Pages 6755-6765
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq(-1) we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq(-1). The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464454400024 Publication Date 2019-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access: Available from 06.09.2019
Notes ; The work was supported by the RFBR project 18-29-19113-mk, grant no. 311533 of Academy of Finland, Russian Federation President Program for young scientist MK-3140.2018.2. Also, the reported study was funded by RFBR and Moscow city Government according to the research project no. 19-32-70004. TEM measurements were performed with financial support from the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. ; Approved Most recent IF: 7.367
Call Number UA @ admin @ c:irua:159339 Serial 5249
Permanent link to this record
 

 
Author Morales-Yanez, F.; Trashin, S.; Hermy, M.; Sariego, I.; Polman, K.; Muyldermans, S.; De Wael, K.
Title (down) Fast one-step ultrasensitive detection of toxocara canis antigens by a nanobody-based electrochemical magnetosensor Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 18 Pages 11582-11588
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Human toxocariasis (HT) is a cosmopolitan zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis. Current HT diagnostic methods do not discriminate between active and past infections. Here, we present a method to quantify Toxocara excretory/secretory antigen, aiming to identify active cases of HT. High specificity is achieved by employing nanobodies (Nbs), single domain antigen binding fragments from camelid heavy chain-only antibodies. High sensitivity is obtained by the design of an electrochemical magnetosensor with an amperometric read-out. Reliable detection of TES antigen at 10 and 30 pg/mL level was demonstrated in phosphate buffered saline and serum, respectively. Moreover, the assay showed no cross-reactivity with other nematode antigens. To our knowledge, this is the most sensitive method to quantify the TES antigen so far. It also has great potential to develop point of care diagnostic systems in other conditions where high sensitivity and specificity are required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487156900016 Publication Date 2019-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 2 Open Access
Notes ; This project was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Flanders, Project G.0189.13N) and BOF UAntwerp. The authors acknowledge Prof. Pierre Dorny (Institute of Tropical Medicine Antwerp) and Dr. Beatrice Nickel (Swiss Institute of Tropical Medicine) for providing the antigens needed for the cross-reactivity experiments. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:163784 Serial 5621
Permanent link to this record
 

 
Author Jin, L.; Batuk, M.; Kirschner, F.K.K.; Lang, F.; Blundell, S.J.; Hadermann, J.; Hayward, M.A.
Title (down) Exsolution of SrO during the Topochemical Conversion of LaSr3CoRuO8to the Oxyhydride LaSr3CoRuO4H4 Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 21 Pages 14863-14870
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via topochemical anion-exchange. Close inspection of X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n ‘perovskite’ layers into the Ruddlesden-Popper stacking sequence. This novel pseudo-topochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co1+Ru2+O4H4 (Co1+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and μ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic exchange interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000494894400062 Publication Date 2019-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 1 Open Access
Notes We thank P. Manuel for assistance collecting the neutron powder diffraction data. We thank The Leverhulme Trust grant award RPG-2014-366 “Topochemical reduction of 4d and 5d transition metal oxides” for supporting this work. Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Investigation by TEM was supported through the FWO grant G035619N. Approved Most recent IF: 4.857
Call Number EMAT @ emat @c:irua:164625 Serial 5434
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.; Peeters, F.M.
Title (down) Exploiting the novel electronic and magnetic structure of C3Nvia functionalization and conformation Type A1 Journal article
Year 2019 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume 5 Issue 5 Pages 1900459
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract 2D polyaniline, C3N, is of recent high interest due to its unusual properties and potential use in various technological applications. In this work, through systematic first-principles calculations, the atomic, electronic, and magnetic structure of C3N and the changes induced due to functionalization by the adsorption of hydrogen, oxygen, and fluorine, for different coverages and sites, as well as on formation of nanoribbons including the effect of adsorbed hydrogen and oxygen, and the effect of strain, are investigated. Among other interesting phenomena, for hydrogen adsorption, a semiconductor-to-topological insulator transition, where two Dirac-points appear around the Fermi level, as well as ferromagnetic ordering for both hydrogen and oxygen functionalization, is identified. Considering C3N nanoribbons, adsorption of H leads to significant changes in the electronic properties, such as transforming the structures from semiconductor to metallic. Furthermore, investigating the effect of strain on the physical properties, it is found that the band gap can be significantly altered and controlled. The present findings predict that a wide variation in the magnetic and electronic structure of C3N can be achieved by adatom functionalization and conformation indicating its high potential for use in various technological applications, ranging from catalysis, energy storage, and nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486528200001 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.193 Times cited 39 Open Access
Notes ; This work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). In addition, we acknowledge the OpenMX team for OpenMX code. ; Approved Most recent IF: 4.193
Call Number UA @ admin @ c:irua:162790 Serial 5414
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title (down) Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 6 Pages 064512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459322400005 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158621 Serial 5212
Permanent link to this record
 

 
Author Perreault, P.; Robert, E.; Patience, G.S.
Title (down) Experimental methods in chemical engineering : mass spectrometry – MS Type A1 Journal article
Year 2019 Publication The Canadian journal of chemical engineering Abbreviated Journal
Volume 97 Issue 5 Pages 1036-1042
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Mass spectrometry identifies the atomic mass of molecules and fragments in the gas phase. The spectrometer ionizes the molecules that then pass through an electric or magnetic field towards a detector. The field modifies the molecule's trajectory and we infer mass from its direction and velocity in a static field or from the stability of its path in a dynamic field. The electric current is amplified and a mass spectrum is generated from the location or timing of the signal from the detector, translated into a plot of the intensity as a function of the mass‐over‐charge ratio. It is field deployable, measures concentrations in real time with a temporal resolution better than 100 ms, and detection limits of fg. However, the signal drifts with time so we have to calibrate it as frequently as every hour. Calibrating requires multiple mixtures with varying concentrations to map the non‐linear response. The Web of Science Core Collection indexed over 60 000 articles that refer to MS (2016 and 2017) with applications ranging from permanent gas analysis, to identifying protein, forensic science, and natural products. The bibliometric software VOSViewer(2010) identified four clusters of research related to MS: (1) proteomics, proteins, plasma, and metabolomics; (2) solid phase extraction together with gas chromatography; (3) tandem mass spectrometry and liquid chromatography; and (4) waste water and toxicity. We expect that the technique will continue to evolve with increased sensitivity, lower drift, and greater specificity. Miniaturization efforts should also continue in order to develop faster field deployable instruments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468025000001 Publication Date 2019-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-4034; 1939-019x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:162123 Serial 7947
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S.
Title (down) Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 36 Issue 36 Pages 1900096
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477679400014 Publication Date 2019-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access
Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474
Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175
Permanent link to this record
 

 
Author Chaves, A.; Neilson, D.
Title (down) Exotic state seen at high temperatures Type Editorial
Year 2019 Publication Nature Abbreviated Journal Nature
Volume 574 Issue 7776 Pages 39-40
Keywords Editorial; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The phenomenon of Bose-Einstein condensation is typically limited to extremely low temperatures. The effect has now been spotted at much higher temperatures for particles called excitons in atomically thin semiconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488832500022 Publication Date 2019-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 40.137
Call Number UA @ admin @ c:irua:163739 Serial 5413
Permanent link to this record
 

 
Author Van der Donck, M.
Title (down) Excitonic complexes in transition metal dichalcogenides and related materials Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 224 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162525 Serial 5412
Permanent link to this record
 

 
Author Vohra, A.; Khanam, A.; Slotte, J.; Makkonen, I.; Pourtois, G.; Loo, R.; Vandervorst, W.
Title (down) Evolution of phosphorus-vacancy clusters in epitaxial germanium Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 2 Pages 025701
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The E centers (dopant-vacancy pairs) play a significant role in dopant deactivation in semiconductors. In order to gain insight into dopant-defect interactions during epitaxial growth of in situ phosphorus doped Ge, positron annihilation spectroscopy, which is sensitive to open-volume defects, was performed on Ge layers grown by chemical vapor deposition with different concentrations of phosphorus (similar to 1 x 10(18)-1 x 10(20) cm(-3)). Experimental results supported by first-principles calculations based on the two component density-functional theory gave evidence for the existence of mono-vacancies decorated by several phosphorus atoms as the dominant defect type in the epitaxial Ge. The concentration of vacancies increases with the amount of P-doping. The number of P atoms around the vacancy also increases, depending on the P concentration. The evolution of P-n-V clusters in Ge contributes significantly to the dopant deactivation. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455922100057 Publication Date 2019-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:156722 Serial 5274
Permanent link to this record
 

 
Author Behera, B.C.; Jana, S.; Bhat, S.G.; Gauquelin, N.; Tripathy, G.; Kumar, P.S.A.; Samal, D.
Title (down) Evidence for exchange bias coupling at the perovskite/brownmillerite interface in spontaneously stabilized SrCoO3-\delta/SrCoO2.5 bilayers Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 2 Pages 024425
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interface effect in complex oxide thin-film heterostructures lies at the vanguard of current research to design technologically relevant functionality and explore emergent physical phenomena. While most of the previous works focus on the perovskite/perovskite heterostructures, the study of perovskite/brownmillerite interfaces remains in its infancy. Here, we investigate spontaneously stabilized perovskite-ferromagnet (SrCoO3-delta)/brownmillerite-antiferromagnet (SrCoO2.5) bilayer with T-N > T-C and discover an unconventional interfacial magnetic exchange bias effect. From magnetometry investigations, it is rationalized that the observed effect stems from the interfacial ferromagnet/antiferromagnet coupling. The possibility for coupled ferromagnet/spin-glass interface engendering such effect is ruled out. Strikingly, a finite coercive field persists in the paramagnetic state of SrCoO3-delta,whereas the exchange bias field vanishes at T-C . We conjecture the observed effect to be due to the effective external quenched staggered field provided by the antiferromagnetic layer for the ferromagnetic spins at the interface. Our results not only unveil a paradigm to tailor the interfacial magnetic properties in oxide heterostructures without altering the cations at the interface, but also provide a purview to delve into the fundamental aspects of exchange bias in such unusual systems, paving a big step forward in thin-film magnetism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456481900003 Publication Date 2019-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access OpenAccess
Notes ; We are grateful to Sachin Sarangi for his superb technical support during magnetic measurements. We thank Gopal Pradhan for fruitful discussion. We thank Zhicheng Zhong for reading the manuscript and for suggestions. We thank T. Som for extending laboratory facility. D.S. and B.C.B. acknowledge the financial support from Max-Planck Society through Max Planck Partner Group. S.G.B. acknowledges the INSPIRE Faculty Fellowship Programme (DSTO1899) for the financial support. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:157562 Serial 5248
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Janssens, K.; Caen, J.
Title (down) Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings Type A1 Journal article
Year 2019 Publication Heritage science Abbreviated Journal
Volume 7 Issue 7 Pages 22
Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This study concerns the assessment of a new polyvinyl alcohol–borax/agarose blend hydrogel (PVA–B/AG) tailored for the conservation of ancient Egyptian wall paintings. The increasing problems of deteriorated consolidants affecting ancient wall paintings have attracted the interest of conservation scientists in the last 20 years. The ability of a new blend for removing aged Paraloid® B-72 layers from painted stone and plaster samples has been evaluated. The hydrogel blend was used to expose the aged Paraloid in a controlled manner to six different cleaning system (CS). CS1–CS4 consist of solvents or solvent mixtures; CS5 and CS6 are nanostructured fluids (NSFs). The evaluation of the removal process was carried out by quantitative and qualitative methods, namely, visual examination, 3D microscopy, contact angle and colorimetric measurements and by Fourier transform infra-red spectrometry in reflectance mode. The results showed that the PVA–B/AG blend hydrogel, loaded with specific cleaning systems, was able to remove deteriorated B-72 and allowed to restore the painted surface to a state close to the original one. The PVA–B/AG blend showed good workability, permitting it to be easily cut, shaped, applied and removed. It could also be verified by means of different investigation methods that the blend left no detectable residues. As a final realistic check of the method, the PVA–B/AG hydrogel loaded with the best functioning cleaning system (CS3) was used to remove an aged consolidant layer from an ancient Egyptian wall painting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000463733900001 Publication Date 2019-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; Ehab Al-Emam acknowledges the Egyptian Ministry of Higher Education for funding his PhD scholarship. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158879 Serial 5615
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N.
Title (down) Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 16 Pages 165002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458524800001 Publication Date 2019-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:157458 Serial 5247
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K.
Title (down) Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 283 Issue 283 Pages 343-348
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455854000043 Publication Date 2018-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 1 Open Access
Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:155665 Serial 5605
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title (down) Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061
Permanent link to this record
 

 
Author Gu, J.-G.; Zhang, Y.; Gao, M.-X.; Wang, H.-Y.; Zhang, Q.-Z.; Yi, L.; Jiang, W.
Title (down) Enhancement of surface discharge in catalyst pores in dielectric barrier discharges Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 15 Pages 153303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The generation of high-density plasmas on the surface of porous catalysts is very important for plasma catalysis, as it determines the active surface of the catalyst that is available for the reaction. In this work, we investigate the mechanism of surface and volume plasma streamer formation and propagation near micro-sized pores in dielectric barrier discharges operating in air at atmospheric pressure. A two-dimensional particle-in-cell/ Monte Carlo collision model is used to model the individual kinetic behavior of plasma species. Our calculations indicate that the surface discharge is enhanced on the surface of the catalyst pores compared with the microdischarge inside the catalyst pores. The reason is that the surface ionization wave induces surface charging along the catalyst pore sidewalls, leading to a strong electric field along the pore sidewalls, which in turn further enhances the surface discharge. Therefore, highly concentrated reactive species occur on the surfaces of the catalyst pores, indicating high-density plasmas on the surface of porous catalysts. Indeed, the maximum electron impact excitation and ionization rates occur on the pore surface, indicating the more pronounced production of excited state and electron-ion pairs on the pore surface than inside the pore, which may profoundly affect the plasma catalytic process. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465441200022 Publication Date 2019-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:160397 Serial 5273
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E.
Title (down) Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
Year 2019 Publication Bioresource technology Abbreviated Journal
Volume 287 Issue Pages 121398
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469414500008 Publication Date 2019-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:159661 Serial 7916
Permanent link to this record
 

 
Author Yang, Z.; Zhu, W.; Yu, D.; Bo, Y.; Li, J.
Title (down) Enhanced carbon and nitrogen removal performance of simultaneous anammox and denitrification (SAD) with mannitol addition treating saline wastewater Type A1 Journal article
Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 2 Pages 377-388
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Simultaneous anammox and denitrification (SAD) can remove carbon and nitrogen. However, its performance is suppressed under saline surroundings. In this work, mannitol was used to enhance a SAD process treating saline wastewater. RESULTS The optimum carbon and nitrogen removal was achieved at 0.2 mmol L-1 mannitol, during which ammonium removal efficiency (ARE), nitrite removal efficiency (NRE) and chemical oxygen demand (COD) removal efficiency were 96.95%, 93.70% and 90.05%, respectively. The maximum ammonium removal rate (ARR), nitrite removal rate (NRR) and the specific anammox activity (SAA) were increased by 25.49%, 55.84% and 33.83% with optimum addition (0.2 mmol L-1 mannitol) respectively. The diameter of sludge was enlarged with the addition of mannitol (<= 0.2 mmol L-1). The Tseng-Wayman model was more suitable to simulate the whole SAD process. The modified logistic model, the modified Boltzman model and the modified Gompertz model were all appropriate to describe nitrogen removal in a typical cycle with the addition of mannitol. CONCLUSION Mannitol was effective in enhancing a SAD process treating saline wastewater, and maximum nitrogen removal was achieved at mannitol = 0.2 mmol L-1. The Tseng-Wayman model satisfactorily predicted the whole SAD process treating saline wastewater with mannitol addition. (c) 2018 Society of Chemical Industry
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455262100004 Publication Date 2018-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156712 Serial 7911
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M.
Title (down) Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 29 Issue 29 Pages 1809071
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467109100024 Publication Date 2019-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 19 Open Access OpenAccess
Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124
Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190
Permanent link to this record
 

 
Author Einhäupl, P.V.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S.
Title (down) Eliciting stakeholder needs : an anticipatory approach assessing enhanced landfill mining Type A1 Journal article
Year 2019 Publication Waste Management Abbreviated Journal Waste Manage
Volume 98 Issue 98 Pages 113-125
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Landfill owners, governmental institutions, technology providers, academia and local communities are important stakeholders involved in Enhanced Landfill Mining (ELFM). This concept of excavating and processing historical waste streams to higher added values can be seen as a continuation of traditional landfill mining (LFM) and seems to be an innovative and promising idea for potential environmental and societal benefits. However, ELFM's profitability is still under debate, and environmental as well as societal impacts have to be further investigated. This study provides a first step towards an anticipatory approach, assessing ELFM through stakeholder integration. In the study, semi-structured interviews were conducted with various stakeholders, involved in a case study in Flanders, Belgium. Participants were selected across a quadruple helix (QH) framework, i.e. industrial, governmental, scientific, and local community actors. The research comprises 13 interviews conducted with an aim to elicit stakeholder needs for ELFM implementation using a general inductive approach. In total 18 different stakeholder needs were identified. The paper explains how the stakeholder needs refer to the different dimensions of sustainability, which groups of stakeholders they primarily affect, and what types of uncertainty could be influenced by their implementation. The stakeholder needs are structured into societal, environmental, regulatory and techno-economic needs. Results show additional economic, environmental, and societal aspects of ELFM to be integrated into ELFM research, as well as a need for the dynamic modeling of impacts. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487175500012 Publication Date 2019-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 3 Open Access
Notes ; This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185. ; Approved Most recent IF: 4.03
Call Number UA @ admin @ c:irua:163760 Serial 6193
Permanent link to this record
 

 
Author Bottari, F.; Moro, G.; Sleegers, N.; Florea, A.; Cowen, T.; Piletsky, S.; van Nuijs, A.L.N.; De Wael, K.
Title (down) Electropolymerized o-phenylenediamine on graphite promoting the electrochemical detection of nafcillin Type A1 Journal article
Year 2019 Publication Electroanalysis Abbreviated Journal Electroanal
Volume 32 Issue 32 Pages 135-141
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract By combining molecular modelling and electrochemistry we envision the creation of modified electrodes tailored for a more sensitive and selective detection of a single analyte. In this study we report on a graphite screen printed electrode modified with electropolymerized o-phenylenediamine, selected by rational design, which promotes the detection of nafcillin (NAF), an antibiotic. Parameters such as monomer concentration, pH and number of electropolymerization cycles were optimized to obtain the highest current signal for the target upon amperometric detection. NAF identification was based on the redox process at +1.1 V (vs pseudo Ag), ascribed to the oxidation of the C-7 side chain. With the optimized modification protocol, a two-fold increase in nafcillin signal could be obtained: the calibration plot in 0.1 M Britton-Robinson buffer pH 4 showed a limit of detection of 80 nM with improved sensitivity and reproducibility (RSD<5 %) compared to the detection at non-modified electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482596300001 Publication Date 2019-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.851 Times cited 1 Open Access
Notes ; FB and GM devised the study and performed the experiments, FB wrote the original draft of the paper and analysed the data, NS and AvN performed the MS experiments, AF helped with the optimization of the protocol and correction of the first draft, TC and SP performed the rational monomer design, KdW supervised the work and corrected the final draft. All authors gave their suggestions and corrections to the final version of the paper. This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO). ; Approved Most recent IF: 2.851
Call Number UA @ admin @ c:irua:162870 Serial 5601
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sevik, C.; Peeters, F.M.
Title (down) Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory based first-principles calculations, the electronic, vibrational, elastic, and piezoelectric properties of two dynamically stable crystal phases of monolayer Janus MoSTe, namely 1H-MoSTe and 1T'-MoSTe, are investigated. Vibrational frequency analysis reveals that the other possible crystal structure, 1T-MoSTe, of this Janus monolayer does not exhibit dynamical stability. The 1H-MoSTe phase is found to be an indirect band-gap semiconductor while 1T'-MoSTe is predicted as small-gap semiconductor. Notably, in contrast to the direct band-gap nature of monolayers 1H-MoS2 and 1H-MoTe2, 1H-MoSTe is found to be an indirect gap semiconductor driven by the induced surface strains on each side of the structure. The calculated Raman spectrum of each structure shows unique character enabling us to clearly distinguish the stable crystal phases via Raman measurements. The systematic piezoelectric stress and strain coefficient analysis reveals that out-of-plane piezoelectricity appears in 1H-MoSTe and the noncentral symmetric 1T'-MoSTe has large piezoelectric coefficients. Static total-energy calculations show clearly that the formation of 1T'-MoSTe is feasible by using 1T'-MoTe2 as a basis monolayer. Therefore, we propose that the Janus MoSTe structure can be fabricated in two dynamically stable phases which possess unique electronic, dynamical, and piezoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476687800003 Publication Date 2019-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 128 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161899 Serial 5411
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W.
Title (down) Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.
Volume 2 Issue 2 Pages 4067-4074
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700006 Publication Date 2019-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access OpenAccess
Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184
Permanent link to this record
 

 
Author Abdullah, H.M.; da Costa, D.R.; Bahlouli, H.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title (down) Electron collimation at van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that a domain wall separating single-layer graphene and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Two distinct configurations are studied, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge types are assumed to be either zigzag or armchair. We investigate the electron scattering using semiclassical dynamics and verify the results independently with wave-packet dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477892800005 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; H.M.A. and H.B. acknowledge the support of King Fahd University of Petroleum and Minerals under research group Project No. RG181001. D.R.C and A.C. were financially supported by the Brazilian Council for Research (CNPq) and CAPES foundation. B.V.D. is supported by a postdoctoral fellowship by the Research Foundation Flanders (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161887 Serial 5410
Permanent link to this record