|   | 
Details
   web
Records
Author Lebedev, N.; Stehno, M.; Rana, A.; Reith, P.; Gauquelin, N.; Verbeeck, J.; Hilgenkamp, H.; Brinkman, A.; Aarts, J.
Title (down) Gate-tuned anomalous Hall effect driven by Rashba splitting in intermixed LaAlO3/GdTiO3/SrTiO3 Type A1 Journal article
Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 11 Issue 1 Pages 10726
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behaviour of the two-dimensional electron system forming at the interface of SrTiO<sub>3</sub>-based oxide heterostructures. The occurrence of AHE is often interpreted as a signature of ferromagnetism, but it is becoming more and more clear that also paramagnets may contribute to AHE. We studied the influence of magnetic ions by measuring intermixed LaAlO<sub>3</sub>/GdTiO<sub>3</sub>/SrTiO<sub>3</sub>at temperatures below 10 K. We find that, as function of gate voltage, the system undergoes a Lifshitz transition while at the same time an onset of AHE is observed. However, we do not observe clear signs of ferromagnetism. We argue the AHE to be due to the change in Rashba spin-orbit coupling at the Lifshitz transition and conclude that also paramagnetic moments which are easily polarizable at low temperatures and high magnetic fields lead to the presence of AHE, which needs to be taken into account when extracting carrier densities and mobilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000658820100014 Publication Date 2021-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 5 Open Access OpenAccess
Notes J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme ESTEEM3 under grant agreement 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government.; esteem3TA; esteem3reported Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:179608 Serial 6822
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L.
Title (down) Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 141-148
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000368755500014 Publication Date 2015-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access
Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:131589 Serial 4184
Permanent link to this record
 

 
Author Müller, M.; Lebedev, O.I.; Fischer, R.A.
Title (down) Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177 Type A1 Journal article
Year 2008 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 18 Issue 43 Pages 5274-5281
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The highly porous and desolvated (activated) coordination polymer [Zn4O(btb)2] (btb = benzene-1,3,5-tribenzoate; MOF-177) was loaded with the organometallic compounds [Cp2Fe], [Cp*2Zn], [Cu(OCHMeCH2NMe2)2], [CpCuL] (L = PMe3, CNtBu) and [CpPd(3-C3H5)] via solvent-free adsorption from the gas-phase. The inclusion compounds of the type [LnM]a@MOF-177, where [LnM] indicates the respective compound and the parameter a denotes the number of molecules per formula unit of the MOF-177, were characterised by elemental analysis, FT-IR, solid-state NMR spectroscopy and by powder X-ray diffraction (PXRD). Remarkably high effective loadings of up to 11 molecules [Cp2Fe] and 10 molecules [CpPd(3-C3H5)] per cavity were determined. The analytical data prove that the host lattice and the guest molecules interact only by weak van-der-Waals forces without any significant change of the framework or the chemical nature of the included molecules. Cu nanoparticles showing the typical surface plasmon resonance at 580 nm and Pd nanoparticles of about 2.6 nm in size were formed inside the cavities of MOF-177 by the thermally activated hydrogenolysis of the inclusion compounds [CpCuCNtBu]2@MOF-177 and by photolysis of [CpPd(3-C3H5)]10@MOF-177 in an inert atmosphere (Ar). PXRD, FT-IR and NMR studies revealed that the MOF-177 matrix remained unchanged during the decomposition process of the precursors. N2 adsorption studies of the obtained materials Cu@MOF-177 (e.g. 10.6 wt.% Cu, 2309 m2 g-1) and Pd@MOF-177 (e.g. 32.5 wt.%, 1063 m2 g-1) reveal high remaining specific surface areas (Langmuir model).
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000260487300015 Publication Date 2008-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 65 Open Access
Notes Esteem 026019 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75699 Serial 1318
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title (down) Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 316 Issue 316 Pages 850-856
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398985200089 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access OpenAccess
Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A.
Title (down) GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 41 Pages 16370-16373
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295997500014 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 82 Open Access
Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93582 Serial 1315
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M.
Title (down) Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 11453-11456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383410700008 Publication Date 2016-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 75 Open Access OpenAccess
Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:137123 Serial 4329
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.;
Title (down) Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 6 Pages 1585-1589
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330558400021 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 61 Open Access OpenAccess
Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:115726 Serial 1314
Permanent link to this record
 

 
Author Hole, D.E.; Townsend, P.D.; Barton, J.D.; Nistor, L.C.; van Landuyt, J.
Title (down) Gallium colloid formation during ion implantation of glass Type A1 Journal article
Year 1995 Publication Journal of non-crystalline solids Abbreviated Journal J Non-Cryst Solids
Volume 180 Issue Pages 266-274
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995QB59400018 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.766 Times cited 34 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:13288 Serial 1313
Permanent link to this record
 

 
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K.
Title (down) Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
Year 2016 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 174 Issue Pages 28-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000373865700005 Publication Date 2016-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 4 Open Access
Notes Approved Most recent IF: 2.084
Call Number UA @ lucian @ c:irua:144729 Serial 4659
Permanent link to this record
 

 
Author Verbist, K.; Lebedev, O.I.; Van Tendeloo, G.; Verhoeven, M.A.J.; Rijnders, A.J.H.M.; Blank, D.H.A.; Rogalia, H.
Title (down) Ga segregation in DyBa2Cu3O7-\delta/PrBa2Cu3-xGaxO7-\delta/DyBa2Cu3O7-\delta ramp-type Josephson junctions Type A1 Journal article
Year 1997 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 70 Issue 9 Pages 1167-1169
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1997WL14700036 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes Approved Most recent IF: 3.411; 1997 IF: 3.033
Call Number UA @ lucian @ c:irua:21426 Serial 1312
Permanent link to this record
 

 
Author Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title (down) Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
Year 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
Volume Issue Pages 105-147
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier BV Place of Publication Editor
Language Wos Publication Date 2016-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
Impact Factor Times cited Open Access
Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Dubois, P.; Hecq, M.; Bittencourt, C.;
Title (down) Functionalization of MWCNTs with atomic nitrogen : electronic structure Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue 4 Pages 045202-45204
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The changes induced by exposing multi-walled carbon nanotubes (CNTs) to atomic nitrogen were analysed by high-resolution transmission electron microscopy (HRTEM), x-ray and ultraviolet photoelectron spectroscopy. It was found that the atomic nitrogen generated by a microwave plasma effectively grafts chemical groups onto the CNT surface altering the density of valence electronic states. HRTEM showed that the exposure to atomic nitrogen does not significantly damage the CNT surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000253177900018 Publication Date 2008-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:102633 Serial 1306
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Sophie, P.; Dubois, P.; Godfroid, T.; Hecq, M.; Bittencourt, C.;
Title (down) Functionalization of MWCNTs with atomic nitrogen Type A1 Journal article
Year 2009 Publication Micron Abbreviated Journal Micron
Volume 40 Issue 1 Pages 85-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study of the changes induced by exposing MWCNTs to a nitrogen plasma, it was found by HRTEM that the atomic nitrogen exposure does not significantly etch the surface of the carbon nanotube (CNT). Nevertheless, the atomic nitrogen generated by a microwave plasma effectively grafts amine, nitrile, amide, and oxime groups onto the CNT surface, as observed by XPS, altering the density of valence electronic states, as seen in UPS. (C) 2008 Elsevier Ltd. All fights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000261420900017 Publication Date 2008-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 24 Open Access
Notes Pai 6/1; Pa 6/27 Approved Most recent IF: 1.98; 2009 IF: 1.626
Call Number UA @ lucian @ c:irua:103080 Serial 1305
Permanent link to this record
 

 
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D.
Title (down) Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 618 Issue Pages 156652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950654300001 Publication Date 2023-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 11 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number EMAT @ emat @c:irua:196150 Serial 7376
Permanent link to this record
 

 
Author Canossa, S.; Wuttke, S.
Title (down) Functionalization chemistry of porous materials Type Editorial
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue 41 Pages 2003875
Keywords Editorial; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580514700004 Publication Date 2020-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 1 Open Access OpenAccess
Notes ; ; Approved Most recent IF: 19; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:173614 Serial 6524
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H.
Title (down) Functional twin boundaries Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 11 Pages 1052-1059
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000327475900002 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited 5 Open Access
Notes Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:107344 Serial 1304
Permanent link to this record
 

 
Author Khaletskaya, K.
Title (down) Functional metal-organic frameworks : from bulk to surface engineered properties Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:123904 Serial 1301
Permanent link to this record
 

 
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L.
Title (down) Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 31 Pages 2182-2190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462950400038 Publication Date 2019-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 58 Open Access OpenAccess
Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:159414 Serial 5250
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title (down) Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record
 

 
Author Van Tendeloo, G.
Title (down) Fullerenen: een nieuwe vorm van koolstof Type A3 Journal article
Year 1995 Publication Echo 3: essays voor chemie-onderwijs Abbreviated Journal
Volume Issue Pages 79-85
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:13310 Serial 1296
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Shpanchenko, R.V.; Geibel, C.; Rosner, H.
Title (down) Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 17 Pages 174424,1-174424,13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific-heat measurements, as well as band-structure calculations. The compound resembles AA′VO(PO4)2 vanadium phosphates and fits to the extended frustrated square-lattice model with the couplings J1, J1′ between nearest neighbors and J2, J2′ between next-nearest neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J̅ 1≃−5.2 K and J̅ 2≃10.0 K, respectively. The effective frustration ratio α=J̅ 2/J̅ 1 amounts to −1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific-heat data support the estimates of J̅ 1 and J̅ 2 and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band-structure calculations confirm the identification of ferromagnetic J1, J1′ and antiferromagnetic J2, J2′ in PbZnVO(PO4)2 and yield (J1′−J1)≃1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds and propose a strategy for further design of strongly frustrated square-lattice materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278141600082 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83384 Serial 1294
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Tsirlin, A.A.; Prescher, C.; Dubrovinsky, L.; Sheptyakov, D.V.; Schnelle, W.; Hadermann, J.; Van Tendeloo, G.
Title (down) Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet Bi4Fe5O13F Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 2 Pages 024423-24429
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the crystal structure and magnetism of the iron-based oxyfluoride Bi4Fe5O13F, a material prototype of the Cairo pentagonal spin lattice. The crystal structure of Bi4Fe5O13F is determined by a combination of neutron diffraction, synchrotron x-ray diffraction, and transmission electron microscopy. It comprises layers of FeO6 octahedra and FeO4 tetrahedra forming deformed pentagonal units. The topology of these layers resembles a pentagonal least-perimeter tiling, which is known as the Cairo lattice. This topology gives rise to frustrated exchange couplings and underlies a sequence of magnetic transitions at T-1 = 62 K, T-2 = 71 K, and T-N = 178 K, as determined by thermodynamic measurements and neutron diffraction. Below T-1, Bi4Fe5O13F forms a fully ordered non-collinear antiferromagnetic structure, whereas the magnetic state between T-1 and T-N may be partially disordered according to the sizable increase in the magnetic entropy at T-1 and T-2. Bi4Fe5O13F reveals unanticipated magnetic transitions on the pentagonal Cairo spin lattice and calls for a further work on finite-temperature properties of this strongly frustrated spin model. DOI: 10.1103/PhysRevB.87.024423
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314224800002 Publication Date 2013-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107688 Serial 1293
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G.
Title (down) Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 13 Pages 2670-2683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000321809700015 Publication Date 2013-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access
Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:109216 Serial 1292
Permanent link to this record
 

 
Author Alania, M.; Lobato Hoyos, I.P.; Van Aert, S.
Title (down) Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy : a comparison study in terms of integrated intensity and atomic column position measurement Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 184 Issue A Pages 188-198
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramer-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. (C) 2017 Elsevier B.V. All rights reserved.'));
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000415650200022 Publication Date 2017-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited Open Access OpenAccess
Notes ; The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, and G.0368.15N). A. Rosenauer is acknowledged for providing the STEMsim program. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:147658 Serial 4877
Permanent link to this record
 

 
Author Leroux, C.; Nihoul, G.; Van Tendeloo, G.
Title (down) From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy Type A1 Journal article
Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 57 Issue 9 Pages 5111-5121
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000072358600037 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 122 Open Access
Notes Approved Most recent IF: 3.836; 1998 IF: NA
Call Number UA @ lucian @ c:irua:25658 Serial 1290
Permanent link to this record
 

 
Author Ke, X.
Title (down) From top-down to bottom-up : from carbon nanotubes to nanodevices Type Doctoral thesis
Year 2010 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:87408 Serial 1289
Permanent link to this record
 

 
Author Lexcellent, C.; Vivet, A.; Bouvet, C.; Blanc, P.; Satto, C.; Schryvers, D.
Title (down) From the lattice measurements of the austenite and the martensite cells to the macroscopic mechanical behavior of shape memory alloys Type A1 Journal article
Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv
Volume 11 Issue 5 Pages 317-324
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48388 Serial 1288
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Singh, K.; Simon, C.; Lebedev, O.I.; Turner, S.
Title (down) From spin induced ferroelectricity to dipolar glasses : spinel chromites and mixed delafossites Type A1 Journal article
Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 195 Issue Pages 41-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Magnetoelectric multiferroics showing coupling between polarization and magnetic order are attracting much attention. For instance, they could be used in memory devices. Metal-transition oxides are provided several examples of inorganic magnetoelectric multiferroics. In the present short review, spinel and delafossite chromites are described. For the former, an electric polarization is evidenced in the ferrimagnetic state for ACr2O4 polycrystalline samples (A=Ni, Fe, Co). The presence of a JahnTeller cation such as Ni2+ at the A site is shown to yield larger polarization values. In the delafossites, substitution by V3+ at the Cr or Fe site in CuCrO2 (CuFeO2) suppresses the complex antiferromagnetic structure at the benefit of a spin glass state. The presence of cation disorder, probed by transmission electron microscopy, favors relaxor-like ferroelectricity. The results on the ferroelectricity of ferrimagnets and insulating spin glasses demonstrate that, in this research field, transition-metal oxides are worth to be studied.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000309783600006 Publication Date 2012-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 2.299; 2012 IF: 2.040
Call Number UA @ lucian @ c:irua:101219 Serial 1286
Permanent link to this record
 

 
Author Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J.
Title (down) From precursor powders to CsPbX3 perovskite nanowires : one-pot synthesis, growth mechanism, and oriented self-assembly Type A1 Journal article
Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 56 Issue 56 Pages 13887-13892
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.'));
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000413314800065 Publication Date 2017-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 223 Open Access OpenAccess
Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go hybrid (SolTech)”, the China Scholarship Council (Y.T. and K.W.), the Alexander von Humboldt Stiftung (L.P.), and the Flemish Fund for Scientific Research (FWO Vlaanderen; E.B.). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS). ; ecas_sara Approved Most recent IF: 11.994
Call Number UA @ lucian @ c:irua:147434UA @ admin @ c:irua:147434 Serial 4876
Permanent link to this record
 

 
Author Goffin, A.-L.; Duquesne, E.; Raquez, J.-M.; Miltner, H.E.; Ke, X.; Alexandre, M.; Van Tendeloo, G.; van Mele, B.; Dubois, P.
Title (down) From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites Type A1 Journal article
Year 2010 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 20 Issue 42 Pages 9415-9422
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of ε-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as masterbatches by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(ε-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000283264500017 Publication Date 2010-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 42 Open Access
Notes Fwo; Iap-6 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85784 Serial 1284
Permanent link to this record