Number of records found: 2704
 | 
Citations
 | 
   web
Electron microscopy of interfaces in new materials”. Van Tendeloo G, Goessens C, Schryvers D, van Haverbergh J, de Veirman A, van Landuyt J s.l., page 200 (1991).
toggle visibility
Electron microscopy on nanoparticles: structure of C60 and C70 nanopraticles”. Pauwels B, Van Tendeloo G, Joutsensaari J, Kauppinen EI, (1999)
toggle visibility
Electron microscopy, nanoscopy, and scanning micro- and nanoanalysis”. Oleshko VP, Gijbels R, Amelinckx S Wiley, Chichester, page 1 (2013).
toggle visibility
Amelinckx S, van Dyck D, van Landuyt J, Van Tendeloo G (1997) Electron microscopy: principles and fundamentals. Vch, Weinheim
toggle visibility
Electron mobility in Si delta-doped GaAs”. Hai GQ, Studart N, Peeters FM, Devreese JT, Koenraad PM, van de Stadt AFW, Wolter JH, Proceedings of the International Conference on the Physics of Semiconductors 22, 823 (1994)
toggle visibility
Electron probe micro-analysis and laser microprobe mass analysis of material, leached from a limestone cathedral”. Leysen LA, De Waele JK, Roekens EJ, Van Grieken RE, Scanning microscopy 1, 1617 (1987)
toggle visibility
Electron probe X-ray microanalysis for the assessment of homogeneity of candidate reference materials at the nanogram level”. Hoornaert S, Treiger B, Valkovic V, Van Grieken R, Microchimica acta 128, 207 (1998). http://doi.org/10.1007/BF01243051
toggle visibility
Electron probe X-ray microanalysis for the assessment of homogeneity of candidate reference materials at the nanogram level”. Hoornaert S, Treiger B, Van Grieken R, Valkovic V page 29 (1996).
toggle visibility
Biermans E (2012) Electron tomography : from qualitative to quantitative. Antwerpen
toggle visibility
Van Boxem R (2015) Electron vortex beams : an in-depth theoretical study. Antwerpen
toggle visibility
Electron-electron scattering induced capture in GaAs quantum wells”. Kálna K, Mo×ko M, Peeters FM, Lithuanian journal of physics 35, 435 (1995)
toggle visibility
Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides”. Zhang H, Jin Q, Hu T, Liu X, Zhang Z, Hu C, Zhou Y, Han Y, Wang X, Journal of Advanced Ceramics 12, 1288 (2023). http://doi.org/10.26599/JAC.2023.9220757
toggle visibility
Electron-irridation-induced martensitic transformation in a Ni63Al37 observed in-situ by HREM”. Muto S, Schryvers D, MRS Japan: shape memory materials 18, 853 (1993)
toggle visibility
Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism”. Poulain R, Lumbeeck G, Hunka J, Proost J, Savolainen H, Idrissi H, Schryvers D, Gauquelin N, Klein A, ACS applied electronic materials 4, 2718 (2022). http://doi.org/10.1021/ACSAELM.2C00230
toggle visibility
Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures”. Bafekry A, Sarsari IA, Faraji M, Fadlallah MM, Jappor HR, Karbasizadeh S, Nguyen V, Ghergherehchi M, Applied Physics Letters 118, 143102 (2021). http://doi.org/10.1063/5.0046721
toggle visibility
Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation”. Siriwardane EMD, Karki P, Sevik C, Cakir D, Applied surface science 458, 762 (2018). http://doi.org/10.1016/J.APSUSC.2018.07.058
toggle visibility
Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials”. Bafekry A, Gogova D, M Fadlallah M, V Chuong N, Ghergherehchi M, Faraji M, Feghhi SAH, Oskoeian M, Physical Chemistry Chemical Physics 23, 4865 (2021). http://doi.org/10.1039/D0CP06213H
toggle visibility
Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder”. Craco L, Carara SS, Barboza E da S, Milošević, MV, Pereira TAS, RSC advances 13, 17907 (2023). http://doi.org/10.1039/D3RA00898C
toggle visibility
Mirzakhani M (2017) Electronic properties and energy levels of graphene quantum dots. Antwerpen
toggle visibility
Masir MR (2012) Electronic properties of graphene in inhomogeneous magnetic fields. Antwerpen
toggle visibility
Moldovan D (2016) Electronic properties of strained graphene and supercritical charge centers. Antwerpen
toggle visibility
Kishore VVR (2013) Electronic structure of core-shell nanowires. Antwerpen
toggle visibility
Electronic structures of iMAX phases and their two-dimensional derivatives: A family of piezoelectric materials”. Khazaei M, Wang V, Sevik C, Ranjbar A, Arai M, Yunoki S, Physical review materials 2, 074002 (2018). http://doi.org/10.1103/PHYSREVMATERIALS.2.074002
toggle visibility
de Paula Miranda L (2022) Electronic transport in two dimensional systems with defects. 104 p
toggle visibility
Milovanović, S (2017) Electronic transport properties in nano- and micro-engineered graphene structures. Antwerpen
toggle visibility
Electrons in non-homogeneous magnetic fields”. Peeters FM, Matulis A, Brazilian journal of physics 24, 283 (1994)
toggle visibility
Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators : a review”. Hajizadeh A, Shahalizade T, Riahifar R, Yaghmaee MS, Raissi B, Gholam S, Aghaei A, Rahimisheikh S, Ghazvini AS, Journal of power sources 535, 231448 (2022). http://doi.org/10.1016/J.JPOWSOUR.2022.231448
toggle visibility
Rahemi V (2018) Electrosensing applications by using titania as a support for bio(inspired) molecules. 133 p
toggle visibility
Elemental abundance variation with particle-size in north florida aerosols”. Johansson TB, Van Grieken RE, Winchester JW, Journal of geophysical research 81, 1039 (1976). http://doi.org/10.1029/JC081I006P01039
toggle visibility
Elemental analysis of aerosol-size fractions by proton-induced X-ray-emission”. Johansson TB, Nelson JW, Van Grieken RE, Winchester JW, Transactions of the American Nuclear Society 17, 103 (1973)
toggle visibility