|   | 
Details
   web
Records
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title (up) Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 20 Pages 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M.
Title (up) Unconventional vortex dynamics in mesoscopic superconducting corbino disks Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 19 Pages 197003,1-197003,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000266207700063 Publication Date 2009-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 18 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:77396 Serial 3800
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title (up) Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 10 Pages 107001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700014 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101850 Serial 3801
Permanent link to this record
 

 
Author van den Bos, K.H. W.; De Backer, A.; Martinez, G.T.; Winckelmans, N.; Bals, S.; Nellist, P.D.; Van Aert, S.
Title (up) Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 116 Issue 116 Pages 246101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The development of new nanocrystals with outstanding physicochemical properties requires a full threedimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378059500010 Publication Date 2016-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 46 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects No. G.0374.13N, No. G.0368.15N, and No. G.0369.15N, and by grants to K. H.W. van den Bos and A. De Backer. S. Bals and N. Winckelmans acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant No. 312483—ESTEEM2. The authors are grateful to A. Rosenauer for providing the STEMsim program.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.462
Call Number c:irua:133954 c:irua:133954 Serial 4084
Permanent link to this record
 

 
Author Wu, Z.; Zhai, F.; Peeters, F.M.; Xu, H.Q.; Chang, K.
Title (up) Valley-dependent brewster angles and Goos-Hänchen effect in strained graphene Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 106 Issue 17 Pages 176802,1-176802,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K′) show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K′ valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000290100300016 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 235 Open Access
Notes ; This work was supported by the NSF of China and the MOST, the Swedish International Development Cooperation Agency (SIDA), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:89715 Serial 3832
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M.; Deo, P.S.
Title (up) Vortex phase diagram for mesoscopic superconducting disks Type A1 Journal article
Year 1998 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 81 Issue Pages 2783-2786
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000076133300041 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 327 Open Access
Notes Approved Most recent IF: 8.462; 1998 IF: 6.017
Call Number UA @ lucian @ c:irua:24154 Serial 3879
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title (up) Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
Year 2004 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 93 Issue Pages 267006,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000226054600058 Publication Date 2004-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 105 Open Access
Notes Approved Most recent IF: 8.462; 2004 IF: 7.218
Call Number UA @ lucian @ c:irua:57242 Serial 3854
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title (up) Vortex-antivortex nucleation in magnetically nanotextured superconductors: magnetic-field-driven and thermal scenarios Type A1 Journal article
Year 2005 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 94 Issue Pages 227001,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000229700800059 Publication Date 2005-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 48 Open Access
Notes Approved Most recent IF: 8.462; 2005 IF: 7.489
Call Number UA @ lucian @ c:irua:57243 Serial 3859
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.; Vasilopoulos, P.
Title (up) Wavevector-dependent tunneling through magnetic barriers Type A1 Journal article
Year 1994 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 72 Issue Pages 1518-1521
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1994MZ11500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 403 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9364 Serial 3909
Permanent link to this record