|   | 
Details
   web
Records
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S.
Title (up) The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 1039-1055
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398182800002 Publication Date 2017-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 75 Open Access OpenAccess
Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G.
Title (up) Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 15 Issue 20 Pages 1705-1707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000186425600003 Publication Date 2003-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 82 Open Access
Notes Approved Most recent IF: 19.791; 2003 IF: NA
Call Number UA @ lucian @ c:irua:54810 Serial 3662
Permanent link to this record
 

 
Author Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A.
Title (up) Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO(2)emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NO(x)trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol(-1)NH(3), which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N(2)and H(2)with reasonable yield (>1 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580489400001 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:173589 Serial 6634
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Aerts, C.A.; Houthoofd, K.J.; Grobet, P.J.; Jacobs, P.A.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A.
Title (up) Zeotile-2: a microporous analogue of MCM-48 Type A1 Journal article
Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 7 Issue 7 Pages 861-867
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230259500006 Publication Date 2005-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 10 Open Access
Notes Approved Most recent IF: 1.811; 2005 IF: 1.708
Call Number UA @ lucian @ c:irua:54702 Serial 3931
Permanent link to this record